Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An Electromagnetic Car Alarm. Your latest invention is a car alarm that produces sound at a particularly annoying frequency of 3500 Hz. To do this, the car-alarm circuitry must produce an alternating electric current of the same frequency. That’s why your design includes an inductor and a capacitor in series. The maximum voltage across the capacitor is to be 12.0V . To produce a sufficiently loud sound, the capacitor must store 0.0160 J of energy. What values of capacitance and inductance should you choose for your car-alarm circuit?

Short Answer

Expert verified

A) The value of capacitance is222μF

B) The value of inductance is9.31μH

Step by step solution

01

Concept of the energy in the capacitor

The energy in capacitor is Uc=12CV2where, C is the capacitance and V is the voltage

02

Calculate the values of capacitance

From the given value of the stored energy Uc in the capacitor, we can calculate the capacitance C

C=2UcV2=20.016J12V2=222×10-6F=222μF

Therefore, the value of capacitance is222μF

03

Calculate the values of inductance

For the self-inductance, we use the given value of frequency f from equation in the formL=12πf2C.Substitute the values in the given equation we get,

L=12π3500Hz2222μF=9.31μH

Therefore, the value of inductance is9.31μH

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Light Bulbs in Series and in Parallel. Two light bulbs have constant resistances of 400Ωand 800Ω. If the two light bulbs are connected in series across a 120Vline, find (a) the current through each bulb; (b) the power dissipated in each bulb; (c) the total power dissipated in both bulbs. The two light bulbs are now connected in parallel across the120Vline. Find (d) the current through each bulb; (e) the power dissipated in each bulb; (f) the total power dissipated in both bulbs. (g) In each situation, which of the two bulbs glows the brightest? (h) In which situation is there a greater total light output from both bulbs combined?

A horizontal rectangular surface has dimensions 2.80cmby 3.20cmand is in a uniform magnetic field that is directed at an angle of 30.0°above the horizontal. What must the magnitude of the magnetic field be to produce a flux of 3.10×10-4Wb through the surface?

In the circuit, in Fig. E26.47 the capacitors are initially uncharged, the battery has no internal resistance, and the ammeter is idealized. Find the ammeter reading (a) just after the switch S is closed and (b) after S has been closed for a very long time.

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

The magnetic force on a moving charged particle is always perpendicular to the magnetic fieldB. Is the trajectory of a moving charged particle always perpendicular to the magnetic field lines? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free