Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two copper wires with different diameter are joined end to end. If a current flow in the wire combination, what happens to electrons when they move from the large diameter wire into the smaller diameter wire? Does their drift speed increase, decrease, or stay the same? If the drift speed change, what is the role the force that causes the change? Explain your reasoning.

Short Answer

Expert verified

The electric force causes the change in the drift speed and the drift speed is increase.

Step by step solution

01

Definition of drift speed

The term drift speed is defined as the mean velocity attained by the charged electron in the object or conductor due to electric field.

02

Determine the change in drift velocity and the electrostatic force.

The changes in drift speed is measured by the relation

vd=lnqA

Here, vd,J,I,nqand Aare the changes in drift speed, current density, current intensity, charges concentration, charge of charge carries and cross section area respectively.

From the expression it is clear that the drift velocity and the area have the inverse relationship.

So the drift velocity increases as the area increases.

Hence, the drift velocity inversely proportional to the area so the drift velocity increase.

Consider the electric force expression is:

F=q|PIA

Here, the electric force inversely proportion to the cross-section area. So the force will increase with the decrease in area.

Hence, the electric force causes the change in the drift speed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

BIO The average bulk resistivity of the human body (apart from surface resistance of the skin) is about 5.0Ω·m. The conducting path between the hands can be represented approximately as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible bysoaking the hands in salt water. (a) What is the resistance between the hands if the skin resistance is negligible? (b) What potential difference between thehands is needed for a lethal shock current of 100 mA ? (Note that your result shows that small potential differences produce dangerous currents when the skin is damp.) (c) With the current in part (b),what power is dissipated in the body?

(a) What is the potential difference Vadin the circuit of Fig. P25.62? (b) What is the terminal voltage of the 4.00-Vbattery? (c) A battery with emf and internal resistance 0.50Ωis inserted in the circuit at d, with its negative terminal connected to the negative terminal of the 8.00-Vbattery. What is the difference of potential Vbcbetween the terminals of the 4.00-Vbattery now?

A silver wire 2.6 mm in diameter transfers a charge of 420 C in 80

min. Silver containsfree electrons per cubic meter. (a) What is the

current in the wire? (b) What is the magnitude of thedrift velocity of the

electrons in the wire?

A heart defibrillator is used to enable the heart to start beating if it has stopped. This is done by passing a large current of12Athrough the body at25Vfor a very short time, usually3.0msabout . (a) What power does the defibrillator deliver to the body, and (b) how much energy is transferred ?

An open plastic soda bottle with an opening diameter of 2.5cmis placed on a table. A uniform 1.75-Tmagnetic field directed upward and oriented25° from the vertical encompasses the bottle. What is the total magnetic flux through the plastic of the soda bottle?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free