Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Two copper wires with different diameter are joined end to end. If a current flow in the wire combination, what happens to electrons when they move from the large diameter wire into the smaller diameter wire? Does their drift speed increase, decrease, or stay the same? If the drift speed change, what is the role the force that causes the change? Explain your reasoning.

Short Answer

Expert verified

Answer

The electric force causes the change in the drift speed and the drift speed is increase.

Step by step solution

01

Definition of drift speed

The term drift speed is defined as the mean velocity attained by the charged electron in the object or conductor due to electric field.

02

Determine the change in drift velocity and the electrostatic force.

The changes in drift speed is measured by the relation

νd=InqA

Here,νd,J,I,n,q and are the changes in drift speed, current density, current intensity, charges concentration, charge of charge carries and cross section area respectively.

From the expression it is clear that the drift velocity and the area have the inverse relationship.

So the drift velocity increases as the area increases.

Hence, the drift velocity inversely proportional to the area so the drift velocity increase.

Consider the electric force expression is:

F=qρIA

Here, the electric force inversely proportion to the cross-section area. So the force will increase with the decrease in area.

Hence, the electric force causes the change in the drift speed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Light Bulbs in Series and in Parallel. Two light bulbs have constant resistances of 400Ωand 800Ω. If the two light bulbs are connected in series across a 120Vline, find (a) the current through each bulb; (b) the power dissipated in each bulb; (c) the total power dissipated in both bulbs. The two light bulbs are now connected in parallel across the120Vline. Find (d) the current through each bulb; (e) the power dissipated in each bulb; (f) the total power dissipated in both bulbs. (g) In each situation, which of the two bulbs glows the brightest? (h) In which situation is there a greater total light output from both bulbs combined?

A fuse is a device designed to break a circuit, usually by melting when the current exceeds a certain value. What characteristics should the material of the fuse have?

The circuit shown in Fig. E25.33 contains two batteries, each with an emf and an internal resistance, and two resistors. Find (a) the current in the circuit (magnitude and direction) and (b) the terminal voltage Vabof the 16.0-V battery.

Fig. E25.33

Cyclotrons are widely used in nuclear medicine for producing short-lived radioactive isotopes. These cyclotrons typically accelerate H-(the hydride ion, which has one proton and two electrons) to an energy of 5MeVto20MeV.This ion has a mass very close to that of a proton because the electron mass is negligible about 12000of the proton’s mass. A typical magnetic field in such cyclotrons is 1.9T..(a) What is the speed of a 5.0-MeVH-? (b) If the H-has energy 5.0MeVandB=1.9T what is the radius of this ion’s circulator orbit?

Question: A conducting sphere is placed between two charged parallel plates such as those shown in Figure. Does the electric field inside the sphere depend on precisely where between the plates the sphere is placed? What about the electric potential inside the sphere? Do the answers to these questions depend on whether or not there is a net charge on the sphere? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free