Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Solar Magnetic Energy. Magnetic fields within a sunspot can be as strong as0.4T . (By comparison, the earth’s magnetic field is about 1/10,000 as strong.) Sunspots can be as large as 25,000 km in radius. The material in a sunspot has a density of about 3×10-4kg/m3Assume μ for the sunspot material is μ0. If 100% of the magnetic-field energy stored in a sunspot could be used to eject the sunspot’s material away from the sun’s surface, at what speed would that material be ejected? Compare to the sun’s escape speed, which is about6×105kg/m3 .

Short Answer

Expert verified

The speed at which the material is ejected is20.6×103m/s

Step by step solution

01

Concept of the energy stored due to the magnetic field

The energy stored due to the magnetic field converts to kinetic energyis given asK=UBThe kinetic energy is role="math" localid="1664185693794" 12mv2where the mass m is pV .While the energy storedrole="math" localid="1664185781642" UB=B22μ0VSo, we get the speed of escape byrole="math" localid="1664185914696" 12(pV)2=B22μ0V which can be written asV=B220

02

Calculate the speed at which the material is ejected

The magnetic field B=0.4T, the radius is r=25000kmand the density is p=3×10-4kg/m3Substitute the values in the equation V=B220we have,

V=0.4T23×10-4kg/m3×4π×10-7Tm/A=20.6×103m/s

Therefore, the speed at which the material is ejected is20.6×103m/s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A cylindrical rod has resistivity ρ. If we triple its length and diameter, what is its resistivity in terms ofrole="math" localid="1655715631515" ρ .

Current passes through a solution of sodium chloride. In

1.00s,2.68×1016Na+ions arrive at the negative electrode and3.92×1016CI-

ions arrive at the positive electrode. (a) What is the current passing between

the electrodes? (b) What is the direction of the current?

In the circuit shown in Fig. E25.30, the 16.0-V battery is removed and reinserted with the opposite polarity, so that its negative terminal is now next to point a. Find (a) the current in the circuit (magnitude anddirection); (b) the terminal voltage Vbaof the 16.0-V battery; (c) the potential difference Vacof point awith respect to point c. (d) Graph the potential rises and drops in this circuit (see Fig. 25.20).

Two coils have mutual inductance M=3.25×10-4H. The current in the first coil increases at a uniform rate of 830 A/S. (a) what is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the magnitude of the induced emf in the first coil?

A light bulb glows because it has resistance. The brightness of a light bulb increases with the electrical power dissipated in the bulb. (a) In the circuit shown in Fig. Q25.14a, the two bulbs A and B are identical. Compared to bulb A, does bulb B glow more brightly, just as brightly, or less brightly? Explain your reasoning. (b) Bulb B is removed from the circuit and the circuit is completed as shown in Fig. Q25.14b. Compared to the brightness of bulb A in Fig. Q25.14a, does bulb A now glow more brightly, just as brightly, or less brightly? Explain your reasoning

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free