Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A large electromagnetic coil is connected to a 120-Hz ac source. The coil has resistance 400 Ω, and at this source frequency the coil has inductive reactance 250 Ω. (a) What is the inductance of the coil? (b) What must the rms voltage of the source be if the coil is to consume an average electrical power of 450 W?

Short Answer

Expert verified

a) Inductance of the coil is 0.33 H

b) Rms voltage of the source is 500.31 V

Step by step solution

01

Concept of reactance, impedance and average power

Inductive reactance is the resistance offered by an inductor in a circuit. It is denoted asXL and is calculated using the formula, XL=ωL, where,ω is the angular frequency of the A/C signal, andL is the inductance.

Impedance of a circuit is the total resistance offered by the circuit.Denoted by Z, the formula for impedance of a LR circuit is ZR2+XL2.

Average power of an A/C circuit is given by the formula Pavg=VrmsIrscosϕ, wherePavg is the average power,Vrms is the rms value of the voltage,Irms is the rms value of current,ϕ is the phase difference between voltage and current. It is known that cosϕ=RZ, and Irms=VrmsZ. Using these two,Pavg the formula for comes out to be-Pavg=VrmsRZ2 .

02

Calculation of inductance of the coil

Given that-

XL=250Ωω=2π×120=753.98rad/sVrms=PavgZ=450×471.7=145.69V

Now, from previous discussion it is known that, XL=ωL. Therefore,

L=XLω=250753.98=0.33H

Hence, the inductance of the coil is 0.33 H.

03

Calculation of rms value of voltage

The impedance of the circuit is can be given by,Z=R2+XL2, therefore,

Z=4002+2502=471.7Ω

Now, average power is given by, Pavg=Vrms2RZ2, therefore,

Vrms=ZPavgR=471.7×450400=500.31V

Therefore, rms value of voltage is 500.31 V

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particle with charge-5.60nCis moving in a uniform magnetic fieldrole="math" localid="1655717557369" B=-(1.25T)k^

The magnetic force on the particle is measured to berole="math" localid="1655717706597" F=-(3.40×10-7N)i^-(7.40×10-7N)j^ (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there
components of the velocity that are not determined by the measurement of the force? Explain. (c) Calculate the scalar productv֏F. What is the angle between velocity and force?

The potential difference across the terminals of a battery is 8.40 V when there is a current of 1.50 A in the battery from the negative to the positive terminal. When the current is 3.50 A in the reverse direction, the potential difference becomes10.20 V . (a) What is the internal resistance of the battery? (b) What is the emf of the battery?

A silver wire 2.6 mm in diameter transfers a charge of 420 C in 80

min. Silver containsfree electrons per cubic meter. (a) What is the

current in the wire? (b) What is the magnitude of thedrift velocity of the

electrons in the wire?

An emf source with E = 120 V, a resistor with R = 80.0 Ω, and a capacitor with C = 4.00 µF are connected in series. As the capacitor charges, when the current in the resistor is 0.900 A, what is the magnitude of the charge on each plate of the capacitor?

In the circuit shown in Fig. E26.49, C = 5.90 mF, Ԑ = 28.0 V, and the emf has negligible resistance. Initially, the capacitor is uncharged and the switch S is in position 1. The switch is then moved to position 2 so that the capacitor begins to charge. (a) What will be the charge on the capacitor a long time after S is moved to position 2? (b) After S has been in position 2 for 3.00 ms, the charge on the capacitor is measured to be 110 mC What is the value of the resistance R? (c) How long after S is moved to position 2 will the charge on the capacitor be equal to 99.0% of the final value found in part (a)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free