Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Repeat Exercise 28.43 for the case in which the current in the central, solid conductor is , the current in the tube is , and these currents are in the same direction rather than in opposite directions.

Short Answer

Expert verified

(a) The magnetic field at points outside the central, solid conductor but at inside the tube isB=μ0I12πr .

(b) The magnetic field at points outside the central, solid conductor but at outside the tube isB=μ0I1+I22πr .

Step by step solution

01

Definition of magnetic field

The term magnetic field may be defined as the area around the magnet behaving like a magnet.

02

Determine the magnetic field at points outside the central, solid conductor but at inside the tube and at points outside the central, solid conductor but at outside the tube

a)

Using ampere’s law to a circular path of radius:

Bdl=BIBdl=B(2πr)

But the enclosed current isIencl=I1

Bdl=μ0lendB(2πr)=μ0l1B=μ0l12πr

Hence, the magnetic field at points outside the central, solid conductor but at inside the tube isB=μ0l12πr. .

b)

Now the magnetic field at points outside the central, solid conductor but outside the tube is calculated as:

The enclosed current is the sum of two currents, so,

Iend=I1+I2

So, the magnetic field can be calculated as:

B=μ0I1+I22πr

Hence, the magnetic field at points outside the central, solid conductor but at outside the tube isB=μ0I1+I22πr .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A horizontal rectangular surface has dimensions 2.80cmby 3.20cmand is in a uniform magnetic field that is directed at an angle of 30.0°above the horizontal. What must the magnitude of the magnetic field be to produce a flux of 3.10×10-4Wb through the surface?

(a) What is the potential difference Vadin the circuit of Fig. P25.62? (b) What is the terminal voltage of the 4.00-Vbattery? (c) A battery with emf and internal resistance 0.50Ωis inserted in the circuit at d, with its negative terminal connected to the negative terminal of the 8.00-Vbattery. What is the difference of potential Vbcbetween the terminals of the 4.00-Vbattery now?

Questions: When a thunderstorm is approaching, sailors at sea sometimes observe a phenomenon called “St. Elmo’s fire,” a bluish flickering light at the tips of masts. What causes this? Why does it occur at the tips of masts? Why is the effect most pronounced when the masts are wet? (Hint: Seawater is a good conductor of electricity.)

In the circuit shown in Fig. E25.30, the 16.0-V battery is removed and reinserted with the opposite polarity, so that its negative terminal is now next to point a. Find (a) the current in the circuit (magnitude anddirection); (b) the terminal voltage Vbaof the 16.0-V battery; (c) the potential difference Vacof point awith respect to point c. (d) Graph the potential rises and drops in this circuit (see Fig. 25.20).

(See Discussion Question Q25.14.) Will a light bulb glow more brightly when it is connected to a battery as shown in Fig. Q25.16a, in which an ideal ammeter is placed in the circuit, or when it is connected as shown in Fig. 25.16b, in which an ideal voltmeter V is placed in the circuit? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free