Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a certain experiment, a radio transmitter emits sinusoidal electromagnetic waves of frequency 110.0 MHz in opposite directions inside a narrow cavity with reflectors at both ends, causing a standing-wave pattern to occur. (a) How far apart are the nodal planes of the magnetic field? (b) If the standing-wave pattern is determined to be in its eighth harmonic, how long is the cavity?

Short Answer

Expert verified

A) l=1.36m B) x =10.92m

Step by step solution

01

STEP 1 To determine the wavelength of the waves

The electromagnetic wave travels with the speed of light and as the frequency f of the wave is related to the wavelength and the speed asc=Thus,λ=cf

02

Calculate the wavelength and the nodal planes

The frequency is given by f =110×106Hz The frequency of the electromagnetic waves doesn't change with changing the medium while the wavelength changes as the speed of the light changes by the medium. The wavelength is

λair=cf=3×108m/s110×106Hz=2.73m

The nodal planes of the magnetic field are apart with distance. Plug the values for to get l

l=λ2=2.732=1.36m

Therefore,λair=2.73m

03

Calculate the distance between adjacent nodal planes

For eight antinodes planes of the electric field, use equationx=82λ to get the distance between adjacent nodal planes x which represents the length of the cavity. Substitute the values we have,

x=82(2.73m)=10.92m

Therefore, the distance between adjacent nodal planes x is 10.92m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If a “75-W” bulb (see Problem 25.35) is connected across a 220-V potential difference (as is used in Europe), how much power does it dissipate? Ignore the temperature dependence of the bulb’s resistance.

In the circuit of Fig. E25.30, the 5.0 Ω resistor is removed and replaced by a resistor of unknown resistance R. When this is done, an ideal voltmeter connected across the points band creads 1.9 V. Find (a) the current in the circuit and (b) the resistance R. (c) Graph the potential rises and drops in this circuit (see Fig. 25.20).

In the circuit, in Fig. E26.47 the capacitors are initially uncharged, the battery has no internal resistance, and the ammeter is idealized. Find the ammeter reading (a) just after the switch S is closed and (b) after S has been closed for a very long time.

An electron at point in figure has a speed v0=1.41×106m/s. Find (a) the magnetic field that will cause the electron to follow the semicircular path from to and (b) The time required for the electron to move fromAtoB.

A typical small flashlight contains two batteries, each having an emf of1.5V, connected in series with a bulb having resistance17Ω. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for1.5hwhat is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free