Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a certain experiment, a radio transmitter emits sinusoidal electromagnetic waves of frequency 110.0 MHz in opposite directions inside a narrow cavity with reflectors at both ends, causing a standing-wave pattern to occur. (a) How far apart are the nodal planes of the magnetic field? (b) If the standing-wave pattern is determined to be in its eighth harmonic, how long is the cavity?

Short Answer

Expert verified

A) l=1.36m B) x =10.92m

Step by step solution

01

STEP 1 To determine the wavelength of the waves

The electromagnetic wave travels with the speed of light and as the frequency f of the wave is related to the wavelength and the speed asc=Thus,λ=cf

02

Calculate the wavelength and the nodal planes

The frequency is given by f =110×106Hz The frequency of the electromagnetic waves doesn't change with changing the medium while the wavelength changes as the speed of the light changes by the medium. The wavelength is

λair=cf=3×108m/s110×106Hz=2.73m

The nodal planes of the magnetic field are apart with distance. Plug the values for to get l

l=λ2=2.732=1.36m

Therefore,λair=2.73m

03

Calculate the distance between adjacent nodal planes

For eight antinodes planes of the electric field, use equationx=82λ to get the distance between adjacent nodal planes x which represents the length of the cavity. Substitute the values we have,

x=82(2.73m)=10.92m

Therefore, the distance between adjacent nodal planes x is 10.92m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Electric eels generate electric pulses along their skin that can be used to stun an enemy when they come into contact with it. Tests have shown that these pulses can be up to 500V and produce currents of 80mA(or even larger). A typical pulse lasts for 10ms. What power and how much energy are delivered to the unfortunate enemy with a single pulse, assuming a steady current?

Consider the circuit of Fig. E25.30. (a)What is the total rate at which electrical energy is dissipated in the 5.0-Ω and 9.0-Ω resistors? (b) What is the power output of the 16.0-V battery? (c) At what rate is electrical energy being converted to other forms in the 8.0-V battery? (d) Show that the power output of the 16.0-V battery equals the overall rate of consumption of electrical energy in the rest of the circuit.

Fig. E25.30.

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?

Two coils have mutual inductance M=3.25×10-4H. The current in the first coil increases at a uniform rate of 830 A/S. (a) what is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the magnitude of the induced emf in the first coil?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free