Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An emf source with E = 120 V, a resistor with R = 80.0 Ω, and a capacitor with C = 4.00 µF are connected in series. As the capacitor charges, when the current in the resistor is 0.900 A, what is the magnitude of the charge on each plate of the capacitor?

Short Answer

Expert verified

When an emf source with E=120 V and a resistor with 80Ωand a capacitor of 4.00μFare connected in series and the capacitor gets charges when the current in the resistor is 0.900 A then the magnitude of the charge in each plate capacitor is192μC

Step by step solution

01

EMF of the battery

Electromotive force (Emf) is the total amount of electrical potential energy a battery can supply before it is connected to an external circuit

02

Potential difference across the circuit

We know that the charges Q on the plates of the capacitor depend on the voltageVC across both the plates and it is given by:

Q=CVC

Where C is the capacitance. To find the value of Q we need to determine VC. To determine theVCwe will use the loop rule.

ε-IR-VC=0VC=ε-IR
03

Calculating the Voltage

Now in the above equation we put the values and get:

VC=ε-IR=(120V)-(0.900A)(80Ω)=48V

Now, putting the values of VCand C into the equation we get:

Q=CVC=(4μF)(48V)=192μC

Therefore, the magnitude of the charge is192μC

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A silver wire 2.6 mm in diameter transfers a charge of 420 C in 80

min. Silver containsfree electrons per cubic meter. (a) What is the

current in the wire? (b) What is the magnitude of thedrift velocity of the

electrons in the wire?

A circular area with a radius of6.50cmlies in the xy-plane. What is the magnitude of the magnetic flux through this circle due to a uniform magnetic fieldlocalid="1655727900569" B=0.230T(a) in the direction of +z direction; (b) at an angle of53.1°from the direction; (c) in the direction?

In the circuit shown in Fig. E26.18,ε=36.V,R1=4.0Ω,R2=6.0Ω,R3=3.0Ω(a) What is the potential difference Vab between points a and b when the switch S is open and when S is closed? (b) For each resistor, calculate the current through the resistor with S open and with S closed. For each resistor, does the current increase or decrease when S is closed?

When a resistor with resistance Ris connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical power. (Throughout, assume that each battery has negligible internal resistance.) (a) What power does the resistor consume if it is connected to a 12.6-V car battery? Assume that Rremains constant when the power consumption changes. (b) The resistor is connected to a battery and consumes 5.00 W. What is the voltage of this battery?

An alpha particle (a He nucleus containing two protons and two neutrons and having a mass of 6.64×10-7kg) travelling horizontally at 35.6km/senter a uniform, vertical,1.80-T magnetic field.(a) What is the diameter of the path followed by this alpha particle? (b) what effect does the magnetic field have on the speed of the particle? (c) What are the magnitude and direction of the acceleration of the alpha particle while it is in the magnetic field? (d) explain why the speed of the particle does not change even though an unbalanced external force acts on it.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free