Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

As a new electrical technician, you are designing a large solenoid to produce a uniform 0.150-T magnetic field near the centre of the solenoid. You have enough wire for 4000 circular turns. This solenoid must be 55.0 cm long and 2.80 cm in diameter. What current will you need to produce the necessary field?

Short Answer

Expert verified

The current in the magnetic field is 16.4A

Step by step solution

01

Concept of the the magnetic field at the center of the solenoid

The magnetic field at the center of the solenoid is given by B=μ0nlwhere μ0=4ττ×10-7H/mis permeability of free space, I is the current passing through the coil

02

STEP 2 Calculate the current in the magnetic field

To produce a uniform magnetic field of B= 0.150 T near the center of the solenoid. We have enough wire for N is 4000 circular turns and this solenoid must be L is 55.0 cm long and R is 1.40 cm in radius. The magnetic field is given asB=μ0nl where n=NLthus.B=μ0NIL

To find the current in the magnetic field substitute the values in the equation I=BLμ0Nwe have,

I=(0.150T)(0.550m)4π×107Tm/A×4000=16.4A

Therefore, the current in the magnetic field is 16.4A. Also, the magnetic field inside the solenoid is independent of the radius of the solenoid.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When is a 1.5 - VAAA battery not actually a 1.5 - V battery? That is, when do this its terminals provide a potential difference of less than 1.5 V ?

The circuit shown in Fig. E25.33 contains two batteries, each with an emf and an internal resistance, and two resistors. Find (a) the current in the circuit (magnitude and direction) and (b) the terminal voltage Vabof the 16.0-V battery.

Fig. E25.33

The potential difference across the terminals of a battery is 8.40 V when there is a current of 1.50 A in the battery from the negative to the positive terminal. When the current is 3.50 A in the reverse direction, the potential difference becomes10.20 V . (a) What is the internal resistance of the battery? (b) What is the emf of the battery?

(See Discussion Question Q25.14.) Will a light bulb glow more brightly when it is connected to a battery as shown in Fig. Q25.16a, in which an ideal ammeter is placed in the circuit, or when it is connected as shown in Fig. 25.16b, in which an ideal voltmeter V is placed in the circuit? Explain your reasoning.

A 1.50-mcylindrical rod of diameter 0.500cmis connected to

a power supply that maintains a constant potential difference of 15.0Vacross

its ends, while an ammeter measures the current through it. You observe that

at room temperature (20.0C)the ammeter reads 18.5Awhile at 92.0Cit

reads 17.2A. You can ignore any thermal expansion of the rod. Find (a) the

resistivity at and (b) the temperature coefficient of resistivity at for the material of the rod.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free