Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A sinusoidal electromagnetic wave is propagating in vacuum in the +z- direction. If at a particular instant and at a certain point in space the electric field is in the +x- direction and has magnitude what are the magnitude 4.00 V/m and direction of the magnetic field of the wave at this same point in space and instant in time?

Short Answer

Expert verified

The magnitude of magnetic field is 1.33×10-8T and the direction of the wave is +y- direction.

Step by step solution

01

Step 1: Define direction waves.

The electric and magnetic fields are perpendicular to the direction of propagation and to each other. The direction of the propagation is the given by the direction of E×B.

The vector equation of electromagnetic wave is:

S=1μ0E×B

The formula used to determine the amplitude of electric and magnetic fields of the wave are:

Emax=cBmaxBmax=Emaxc

02

Determine the direction and magnitude of wave.

The direction wave determined by applying right hand rule.

When the direction of electric field is positivex and the direction of magnetic is positive z, the direction of wave of propagation will be the positivey to become perpendicular to the electric and magnetic field.

The formula used to determine the amplitude of electric and magnetic fields of the wave are:

Bmax=Emaxc=4.03×108=1.33×10-8T

Hence, magnitude of magnetic field is 1.33×10-8Tand the direction of the wave is +y- direction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) What is the potential difference Vadin the circuit of Fig. P25.62? (b) What is the terminal voltage of the 4.00-Vbattery? (c) A battery with emf and internal resistance 0.50Ωis inserted in the circuit at d, with its negative terminal connected to the negative terminal of the 8.00-Vbattery. What is the difference of potential Vbcbetween the terminals of the 4.00-Vbattery now?

Electric eels generate electric pulses along their skin that can be used to stun an enemy when they come into contact with it. Tests have shown that these pulses can be up to 500V and produce currents of 80mA(or even larger). A typical pulse lasts for 10ms. What power and how much energy are delivered to the unfortunate enemy with a single pulse, assuming a steady current?

Questions: When a thunderstorm is approaching, sailors at sea sometimes observe a phenomenon called “St. Elmo’s fire,” a bluish flickering light at the tips of masts. What causes this? Why does it occur at the tips of masts? Why is the effect most pronounced when the masts are wet? (Hint: Seawater is a good conductor of electricity.)

The tightly wound toroidal solenoid is one of the few configurations for which it is easy to calculate self-inductance. What features of the toroidal solenoid give it this simplicity?

(See Discussion Question Q25.14.) An ideal ammeter A is placed in a circuit with a battery and a light bulb as shown in Fig. Q25.15a, and the ammeter reading is noted. The circuit is then reconnected as in Fig. Q25.15b, so that the positions of the ammeter and light bulb are reversed. (a) How does the ammeter reading in the situation shown in Fig. Q25.15a compare to the reading in the situation shown in Fig. Q25.15b? Explain your reasoning. (b) In which situation does the light bulb glow more brightly? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free