Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cube has sides of lengthL=0.300mm. One corner is at the origin (Fig. E22.6). The nonuniform electric field is given byE=(-5.00N/C×m)x+(3.00N/C×m)zk.(a) Find the electric flux through each of the six cube facesS1,S2,S3,S4,S5andS6. (b) Find the total electric charge inside the cube.

Short Answer

Expert verified

(a)

The electric flux through the first side of the cube face surface is0Nm2/C.
The electric flux through the second side of the cube face surface is0.081Nm2/C
The electric flux through the third side of the cube face surface is0Nm2/C
The electric flux through the fourth side of the cube face surface is0Nm2/C
The electric flux through the fifth side of the cube face surface is-0.135Nm2/C
The electric flux through the sixth side of the cube face surface is0Nm2/C

(b)

The total electric charge inside the cube is-4.781×10-13C.

Step by step solution

01

Define free body diagram and given data

The concept of electric flux, its calculation, and the analogy between the flux of an electric field and that of water. Let us imagine the flow of water with a velocityvin a pipe in a fixed direction, say to the right. If we take the cross-sectional plane of the pipe and consider a small unit area given by ds from that plane, the volumetric flow of the liquid crossing that plane normal to the flow can be given as vds.

02

Simplify the electrical flux

As equation22.8mentions, the electric flux through a spherical surface inside the inner surface of the sphere is given by:

ϕE=Qenclosedε0

As equation 22.5mentions, the electric flux through a surface is given by

localid="1665115999561" ϕE=EAcosf=E×dA

Solve for the first side of the cube faceS1:

ϕS1=E×nS1A=E×^A=0

So, the electric flux through the first side of the cube face surface is0Nm2/C.

Solve for the second side of the cube faceS2:

localid="1665116435683" ϕS2=E×n^S2A=E×k^A=3N/C×m×z×0.3m2=3N/C×m×0.3m×0.3m2=3N/C×m×0.3m3=0.081N×m2/C

So, the electric flux through the second side of the cube face surface is0.081Nm2/C.
Solve for the third side of the cube faceS3:

ϕS3=E×n^3A=E×^A=0N×m2/C

So, the electric flux through the third side of the cube face surface is0Nm2/C

Solve for the fourth side of the cube faceS4:

ϕS4=E×n^S4A=E×k^A=-3N/C×m×z×0.3m2=-3N/C×m×0m×0.3m2=0N×m2/C

So, the electric flux through the fourth side of the cube face surface is0Nm2/C.
Solve for the fifth side of the cube faceS5:

ϕS5=E×n^S5A=E×l^A=-5N/C×m×x×0.3m2=-5N/C×m×0.3m×0.3m2=-5N/C×m×0.3m3=-0.135N×m2/C

So, the electric flux through the fifth side of the cube face surface is -0.135Nm2/C.

Solve for the sixth side of the cube faceS6:

ϕS6=E×S^6A=-E×ι^A=-5N/C×m×x×0.3m2=-5N/C×m×0m×0.3m2=0N×m2/C

So, the electric flux through the sixth side of the cube face surface is0Nm2/C.

03

Solve total electric charge

Solve for the total electric charge inside the cube:
We will take the data (electric flux through each side of the cube) from part (a). In order to evaluate the total electric charge density inside the cube, we use the following relation:

Φtotal=ΦS=ΦS1+ΦS2+ΦS3+ΦS4+ΦS5+ΦS6=0+0.081+0+0+-0.135+0Nm2/C=-0.054Nm2/C

As equation 22.8mentions, the electric flux through a spherical surface inside the inner surface of the sphere is given by:

Φtotal==ΦS=ΦS1+ΦS2+ΦS3+ΦS4+ΦS5+ΦS6=0+0.081+0+0+-0.135+0Nm2/C=-0.054Nm2/C

So, the total electric charge inside the cube is-4.781×10-13C.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An open plastic soda bottle with an opening diameter of 2.5cmis placed on a table. A uniform 1.75-Tmagnetic field directed upward and oriented25° from the vertical encompasses the bottle. What is the total magnetic flux through the plastic of the soda bottle?

A 1.50-mcylindrical rod of diameter 0.500cmis connected to

a power supply that maintains a constant potential difference of 15.0Vacross

its ends, while an ammeter measures the current through it. You observe that

at room temperature (20.0C)the ammeter reads 18.5Awhile at 92.0Cit

reads 17.2A. You can ignore any thermal expansion of the rod. Find (a) the

resistivity at and (b) the temperature coefficient of resistivity at for the material of the rod.

A heart defibrillator is used to enable the heart to start beating if it has stopped. This is done by passing a large current of12Athrough the body at25Vfor a very short time, usually3.0msabout . (a) What power does the defibrillator deliver to the body, and (b) how much energy is transferred ?

Electric eels generate electric pulses along their skin that can be used to stun an enemy when they come into contact with it. Tests have shown that these pulses can be up to 500V and produce currents of 80mA(or even larger). A typical pulse lasts for 10ms. What power and how much energy are delivered to the unfortunate enemy with a single pulse, assuming a steady current?

The magnetic force on a moving charged particle is always perpendicular to the magnetic fieldB. Is the trajectory of a moving charged particle always perpendicular to the magnetic field lines? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free