Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Measuring Blood Flow. Blood contains positive and negative ions and thus is a conductor. A blood vessel, therefore, can be viewed as an electrical wire. We can even picture the flowing blood as a series of parallel conducting slabs whose thickness is the diameter d of the vessel moving with speed v. (See Fig. E29.34.) (a) If the blood vessel is placed in a magnetic field B perpendicular to the vessel, as in the figure, show that the motional potential difference induced across it is E = vBd. (b) If you expect that the blood will be flowing at 15 cm/s for a vessel 5.0 mm in diameter, what strength of magnetic field will you need to produce a potential difference of 1.0 mV? (c) Show that the volume rate of flow (R) of the blood is equal to R = πEd/4B. (Note: Although the method developed here is useful in measuring the rate of blood flow in a vessel, it is limited to use in surgery because measurement of the potential E must be made directly across the vessel.)

Short Answer

Expert verified

(a) If the blood vessel is placed in a magnetic field which is perpendicular to the vessel, hence it is shown that the motional potential difference induced across id ε=Bvd

(b) If the blood flows at for the vessel diameter, the magnetic field needed to produce a potential difference of is 1.0mV is 1.3 T

(c) The rate of blood flow is proven to beR=πεd4B

Step by step solution

01

Proving ε=Bvd

The blood slab has a flowing blood which has a width of d and is perpendicular to the field with a speed of v, which is equivalent to a rod of length d, and is moving in a magnetic field B, hence the induced emf is:ε=Bvd

02

Calculating the magnetic field

The blood is flowing at a speed of v = 15cm/s , vessel with diameter d = 5.0mm, and the potential difference of ε=1.mV. Therefore, the magnetic field is given by:

B=εvd=1.0×10-3V0.15m/s5.0×10-3m=1.3T

03

Rate of flow of blood

The cross-sectional area of blood vessel is:

A=πd24

Now, the volume of blood flowing past the cross-section of the vessel equals to the distance that is travelled in time t is x (let), therefore:

v=πd2x4

Since the blood is moving with a velocity of , then therefore the equation becomes:

V=(πd2vt)4

Therefore, the volume rate is:

R=Vt=πd2v4=πd2v4εBd=πεd4B=πεd4B

Hence, proved that blood flow isπεd4B

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The current in a wire varies with time according to the relationship

I=55A-(0.65As2)t2. (a) How many coulombs of charge pass a cross section of the wire in

the time interval between t=0and role="math" localid="1655721302619" t=8.0s? (b) What constant current would transport the

same charge in the same time interval?

Light Bulbs in Series and in Parallel. Two light bulbs have constant resistances of 400Ωand 800Ω. If the two light bulbs are connected in series across a 120Vline, find (a) the current through each bulb; (b) the power dissipated in each bulb; (c) the total power dissipated in both bulbs. The two light bulbs are now connected in parallel across the120Vline. Find (d) the current through each bulb; (e) the power dissipated in each bulb; (f) the total power dissipated in both bulbs. (g) In each situation, which of the two bulbs glows the brightest? (h) In which situation is there a greater total light output from both bulbs combined?

A cylindrical rod has resistivity ρ. If we triple its length and diameter, what is its resistivity in terms ofrole="math" localid="1655715631515" ρ .

An electrical conductor designed to carry large currents has a circular cross section 2.50 mm in diameter and is 14.0 m long. The resistance between its ends is 0.104Ω. (a) What is the resistivity of the material? (b) If the electric-field magnitude in the conductor is 1.28 V/m, what is the total current? (c) If the material has 8.5×1028free electrons per cubic meter, find the average drift speed under the conditions of part (b).

Question: A conducting sphere is placed between two charged parallel plates such as those shown in Figure. Does the electric field inside the sphere depend on precisely where between the plates the sphere is placed? What about the electric potential inside the sphere? Do the answers to these questions depend on whether or not there is a net charge on the sphere? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free