Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In an L-R-C series circuit, R = 400 Ω, L = 0.350 H, and C = 0.0120 mF. (a) What is the resonance angular frequency of the circuit? (b) The capacitor can withstand a peak voltage of 670 V. If the voltage source operates at the resonance frequency, what maximum voltage amplitude can it have if the maximum capacitor voltage is not exceeded?

Short Answer

Expert verified

(a)The resonance angular frequency of the circuit is and (b) Maximum voltage amplitude it can have if the maximum capacitor voltage is not exceeded is 40.7V.

Step by step solution

01

Step-1: Formulas used  

The angular frequency depends on the inductance and the capacitance and it is given by ω=1LC.

Capacitive reactance is given byXC=1ωC

02

Step-2: Calculation of angular frequency

When the angular frequency is varied, the current amplitude will change and the maximum current is produced at the minimum impedance. The process of peaking the current represents the resonance where the initial angular frequency is the same for the final angular frequency.

Plug the values of L and C into equation

ω=1LC=10.350H0.0120×10-6F=1.54×104rad/s

03

Step-3: (b)Calculation of maximum voltage amplitude

First calculate the capacitive reactance

XC=11.54×104rad/s0.0120×10-6F=5410Ω

The current through the capacitor is given by

I=VcXc=550V5410Ω=0.101A

Now, get the amplitude voltage by

V=0.101A400Ω=40.7V

Hence, (a)The resonance angular frequency of the circuit isω=1.54×104rad/s and (b) Maximum voltage amplitude it can have if the maximum capacitor voltage is not exceeded is 40.7V.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We have seen that a coulomb is an enormous amount of charge; it is virtually impossible to place a charge of 1 C on an object. Yet, a current of 10A,10C/sis quite reasonable. Explain this apparent discrepancy.

Two copper wires with different diameter are joined end to end. If a current flow in the wire combination, what happens to electrons when they move from the large diameter wire into the smaller diameter wire? Does their drift speed increase, decrease, or stay the same? If the drift speed change, what is the role the force that causes the change? Explain your reasoning.

Questions: A conductor that carries a net charge has a hollow, empty cavity in its interior. Does the potential vary from point to point within the material of the conductor? What about within the cavity? How does the potential inside the cavity compare to the potential within the material of the conductor?

A typical small flashlight contains two batteries, each having an emf of1.5V, connected in series with a bulb having resistance17Ω. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for1.5hwhat is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free