Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A very long insulating cylinder of charge of radius 2.50cm carries a uniform linear density of 15.0nC/m. If you put one probe of a voltmeter at the surface, how far from the surface must the other probe be placed so that the voltmeter reads 175V.

Short Answer

Expert verified

The second probe should be placed at a distance of 2.3 cm from the surface of the cylinder to make the voltmeter measure 175 V.

Step by step solution

01

Potential law for infinite wire

Let a and b be two points, and the potential at those points is Va and Vb, respectively. The potential difference between two points for an infinite wire can be written as:

Va-Vb=λ2πε0lnrbra

Here ra and rb are the distance of the wire from points a and b, respectively.λis the linear chargedensity distributed across the wire.


02

Determine the distance between two probes of the voltmeter

The potential difference between two points due to a charged cylinder is given by:

ΔV=Va-Vb=λ2πε0lnrbra

Where raand rbare the distances between the cylinder's axis and the point where the potential is measured.

Here, ra=R=0.025mand the term 12πε0=18.0×109N·m2/C2

The target now is to get rbwhere the distance ra, in the problem equals the radius of the cylinder ra=R=0.025m. And the term 12πε0=18.0×109N·m2/C2. But, the distance rbis the distance between the axis of the cylinder and the point b, so the distance between the two probes of the voltmeter will be,

d=rb-R

03

Determine the distance where the second probe should be placed

Plug the values into the equation, and we get,

ΔV=λ2πε0lnrbra175V=18.0×109N·m2/C215.0×10-9C/mlnrb0.025mlnrb0.025m=0.648rb=0.025m×e0.648=0.048m

Now, plug this value to get the distance as:

d=rb-R=4.8cm-2.5cm=2.3cm

Thus, the second probe should be placed at a distance of 2.3 cm from the surface of the cylinder to make the voltmeter measure 175 V.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 1.50-mcylindrical rod of diameter 0.500cmis connected to

a power supply that maintains a constant potential difference of 15.0Vacross

its ends, while an ammeter measures the current through it. You observe that

at room temperature (20.0C)the ammeter reads 18.5Awhile at 92.0Cit

reads 17.2A. You can ignore any thermal expansion of the rod. Find (a) the

resistivity at and (b) the temperature coefficient of resistivity at for the material of the rod.

A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction pependicurlar to its original direction (Fig. E27.24). The beam travels a distance of 1.10 cm while in the field. What is the magnitude of the magnetic field?

In an L-R-C series circuit, what criteria could be used to decide whether the system is over damped or underdamped? For example, could we compare the maximum energy stored during one cycle to the energy dissipated during one cycle? Explain.

A circular area with a radius of6.50cmlies in the xy-plane. What is the magnitude of the magnetic flux through this circle due to a uniform magnetic fieldlocalid="1655727900569" B=0.230T(a) in the direction of +z direction; (b) at an angle of53.1°from the direction; (c) in the direction?

CALC The region between two concentric conducting spheres with radii and is filled with a conducting material with resistivity ρ. (a) Show that the resistance between the spheres is given by

R=ρ4π(1a-1b)

(b) Derive an expression for the current density as a function of radius, in terms of the potential differenceVab between the spheres. (c) Show that the result in part (a) reduces to Eq. (25.10) when the separation L=b-abetween the spheres is small.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free