Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A long, horizontal wire AB rests on the surface of a table and carries a current I. Horizontal wire CD is vertically above wire AB and is free to slide up and down on the two vertical metal guides C and D (Fig. E28.32). Wire CD is connected through the sliding contacts to another wire that also carries a current I, opposite in direction to the current in wire AB. The mass per unit length of the wire CD is l. To what equilibrium height h will the wire CD rise, assuming that the magnetic force on it is due entirely to the current in the wire AB?

Short Answer

Expert verified

The magnitude of the height the wire CD reaches is μ0l22πgλ .

Step by step solution

01

Identification of the concept.

The rod will be experiencing a downward pull by gravity. So, the upward force will move the wire CD in an upward direction until it is completely balanced by the gravitational force, which will cause the system to go under equilibrium.

Refer to the image below.

Since the currents are in opposite directions, therefore, the force experienced will be repulsive in nature

02

 Determination of the height at the wire CD rises

Magnetic force per length due to a current-carrying wire is given as,

FL=μ02πr

Substituting values in the above expression, and we get,

Fl=μ0I2L2πh

Here, L is the length of the wires, and h is the distance between them.

The gravitational force expression is,

mg=λLg

Now, the mechanism of forces acting is,

F1mg=0μ0I2L2πh=λLgh=μ0I22πgλ

Thus, h depends on the current I and also λ. The more the current or less λ, the larger the height h is. The value of h is μ0l22πgλ .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(See Discussion Question Q25.14.) Will a light bulb glow more brightly when it is connected to a battery as shown in Fig. Q25.16a, in which an ideal ammeter is placed in the circuit, or when it is connected as shown in Fig. 25.16b, in which an ideal voltmeter V is placed in the circuit? Explain your reasoning.

In Europe the standard voltage in homes is 220 V instead of the 120 used in the United States. Therefore a “100-W” European bulb would be intended for use with a 220-V potential difference (see Problem 25.36). (a) If you bring a “100-W” European bulb home to the United States, what should be its U.S. power rating? (b) How much current will the 100-W European bulb draw in normal use in the United States?

The capacity of a storage battery, such as those used in automobile electrical systems, is rated in ampere-hours .(Ah)A50AhA battery can supply a current of50Afor 1.0h,or25Afor2.0hor for and so on. (a) What total energy can be supplied by a 12-v,60-Ahbattery if its internal resistance is negligible? (b) What volume (in litres) of gasoline has a total heat of combustion equal to the energy obtained in part (a)? (See Section 17.6; the density of gasoline is 900kg/m3.) (c) If a generator with an average electrical power output ofrole="math" localid="1655719210000" 0.45kW is connected to the battery, how much time will be required for it to charge the battery fully?

A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?

In the circuit shown in Fig. E26.20, the rate at which R1 is dissipating electrical energy is 15.0 W. (a) Find R1 and R2. (b) What is the emf of the battery? (c) Find the current through both R2 and the 10.0 Ω resistor. (d) Calculate the total electrical power consumption in all the resistors and the electrical power delivered by the battery. Show that your results are consistent with conservation of energy.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free