Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two metal spheres are hanging from nylon threads. When you bring the spheres close to each other, they tend to attract. Based on this information alone, discuss all the possible ways that the spheres could be charged. Is it possible that after the spheres touch, they will cling together? Explain.

Short Answer

Expert verified

The spheres can be oppositely charged or one neutral and one charged. They cannot cling together after they physically contact each other

Step by step solution

01

Concept of static electricity.

This is a phenomenon in Physics in which there is a finite transfer of charged particles from one object to another when there is an excess charge pile up or an imbalance of charge at someplace. As an example, if two insulating objects are vigorously rubbed they can acquire equal and opposite charges.

02

Explanation and discussion of possible ways of charging the spheres.

According to the nature of the charges, when two objects possess like charges then they will repel, while if they have unlike charges then they will attract. In this case, the spheres when brought close are showing a tendency to attract. This implies that they both possess a charge of opposite nature, i.e. one is positively charged and another is negatively charged.

Therefore, there are two possible ways the spheres are charged.

  1. One sphere is neutral and another is charged either positively or negatively.

  2. Both spheres carries opposite charges.

There is less possibility that the spheres will cling together because if one sphere is neutral then there will be a flow of the same charge from the other sphere and thus they will repel during their contact.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Why does an electric light bulb nearly always burn out just as you turn on the light, almost never while the light is shining?

Small aircraft often have 24 V electrical systems rather than the 12 V systems in automobiles, even though the electrical power requirements are roughly the same in both applications. The explanation given by aircraft designers is that a 24 V system weighs less than a 12 V system because thinner wires can be used. Explain why this is so.

A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?

In Europe the standard voltage in homes is 220 V instead of the 120 used in the United States. Therefore a “100-W” European bulb would be intended for use with a 220-V potential difference (see Problem 25.36). (a) If you bring a “100-W” European bulb home to the United States, what should be its U.S. power rating? (b) How much current will the 100-W European bulb draw in normal use in the United States?

In the circuit shown in Fig. E26.41, both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free