Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Motional emfs in Transportation. Airplanes and trains move through the earth’s magnetic field at rather high speeds, so it is reasonable to wonder whether this field can have a substantial effect on them. We shall use a typical value of 0.50 G for the earth’s field.

(a) The French TGV train and the Japanese “bullet train” reach speeds of up to 180 mph moving on tracks about 1.5 m apart. At top speed moving perpendicular to the earth’s magnetic field, what potential difference is induced across the tracks as the wheels roll? Does this seem large enough to produce noticeable effects?

(b) The Boeing 747-400 aircraft has a wingspan of 64.4 m and a cruising speed of 565 mph. If there is no wind blowing (so that this is also their speed relative to the ground), what is the maximum potential difference that could be induced between the opposite tips of the wings? Does this seem large enough to cause problems with the plane?

Short Answer

Expert verified
  1. Potential difference is induced across the tracks as the wheels roll is 0.6 mV and this is very small to be noticeable.
  2. The maximum potential difference that could be induced between the opposite tips of the wings is 0.813V and this is also very small to be noticeable thus it does not cause problems with the plane.

Step by step solution

01

Concept

A conductor moving in a magnetic field may have a potential difference induced across it, depending on how it is moving. The magnitude of that induced emf is,

ε=vBLsin(ϕ)

02

Calculation

  1. We have a train with a speed of 180 mph moving on tracks about 1.5 m apart, it is moving perpendicularly to the earth's field (B = 0.50 G), so = 90.0°, substitute with the givens we get (note that l m/s = 2237 mph and 1 G =10 T), so we get

ε=vBLsin(ϕ)

03

Calculation

(a) We have a train with a speed of 180 mph moving on tracks about 1.5 m apart, it is moving perpendicularly to the earth's field (B = 0.50 G), so = 90.0°, substitute with the givens we get (note that l m/s = 2237 mph and 1 G =10 T), so we get

ε=(180mph)1m/s2.237mph0.50×10-4T1.5mε=6.0×10-3V=6.0mV

(b) For a Boeing aircraft, which has a wingspan of 644 m and a cruising speed of 565 mph, the induced emf is, ε=565mph1m/s2.237mph(0.50×10-4T)(64.4m)ε=0.813V

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each of the lettered points at the corners of the cube in Fig. Q27.12 represents a positive charge qmoving with a velocity of magnitude vin the direction indicated. The region in the figure is in a uniform magnetic field , parallel to the x-axis and directed toward the right. Which charges experience a force due to B? What is the direction of the force on each charge?

A particle with mass1.81×10-3kgand a charge of has1.22×10-8C, at a given instant, a velocityV=(3.00×104m/s).What are the magnitude and direction of the particle’s acceleration produced by a uniform magnetic fieldB=(1.63T)i+(0.980T)j^?

Lightning Strikes. During lightning strikes from a cloud to the

ground, currents as high as 25,000 A can occur and last for about 40 ms.

How much charge is transferred from the cloud to the earth during such a

strike?

In the circuit shown in Fig. E26.20, the rate at which R1 is dissipating electrical energy is 15.0 W. (a) Find R1 and R2. (b) What is the emf of the battery? (c) Find the current through both R2 and the 10.0 Ω resistor. (d) Calculate the total electrical power consumption in all the resistors and the electrical power delivered by the battery. Show that your results are consistent with conservation of energy.

In the circuit of Fig. E25.30, the 5.0 Ω resistor is removed and replaced by a resistor of unknown resistance R. When this is done, an ideal voltmeter connected across the points band creads 1.9 V. Find (a) the current in the circuit and (b) the resistance R. (c) Graph the potential rises and drops in this circuit (see Fig. 25.20).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free