Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A solid conducting sphere has net positive charge and radius R = 0.400 m. At a point 1.20 m from the center of the sphere, the electric potential due to the charge on the sphere is 24.0 V. Assume that V = 0 at an infinite distance from the sphere. What is the electric potential at the center of the sphere?

Short Answer

Expert verified

The electric potential at the center of the sphere is 72.0V.

Step by step solution

01

Potential Energy

The equation gives the potential energy due to the sphere;

V=14ππ0qr

Here, r denotes the distance between the sphere and the point where the potential is measured; it can be inside or outside the sphere.

02

Electric potential at the center of the sphere

The potential is inversely proportional to the distance, as shown by the equation;

V1r

The potential at the sphere's center is determined by the radius R, where the potential is constant throughout the sphere. Because the charge q is constant and the term 14π0is constant, a relationship between the states inside the sphere and the states outside the sphere can be established.

role="math" localid="1664260877266" V1V2=r2r1VinsideVouside=rRVinside=rRVouside

Putting the values;

Vinside=1.2m0.40m24.0V

Hence, the electric potential at the center of the sphere is 72.0V.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Fig. E26.49, C = 5.90 mF, Ԑ = 28.0 V, and the emf has negligible resistance. Initially, the capacitor is uncharged and the switch S is in position 1. The switch is then moved to position 2 so that the capacitor begins to charge. (a) What will be the charge on the capacitor a long time after S is moved to position 2? (b) After S has been in position 2 for 3.00 ms, the charge on the capacitor is measured to be 110 mC What is the value of the resistance R? (c) How long after S is moved to position 2 will the charge on the capacitor be equal to 99.0% of the final value found in part (a)?

An electron at point in figure has a speed v0=1.41×106m/s. Find (a) the magnetic field that will cause the electron to follow the semicircular path from to and (b) The time required for the electron to move fromAtoB.

The heating element of an electric dryer is rated at 4.1 kW when connected to a 240-V line. (a) What is the current in the heating element? Is 12-gauge wire large enough to supply this current? (b) What is the resistance of the dryer’s heating element at its operating temperature? (c) At 11 cents per kWh, how much does it cost per hour to operate the dryer?

An emf source with E = 120 V, a resistor with R = 80.0 Ω, and a capacitor with C = 4.00 µF are connected in series. As the capacitor charges, when the current in the resistor is 0.900 A, what is the magnitude of the charge on each plate of the capacitor?

The power rating of a light bulb (such as a 100-W bulb) is the power it dissipates when connected across a 120-V potential difference. What is the resistance of (a) a 100-W bulb and (b) a 60-W bulb? (c) How much current does each bulb draw in normal use?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free