Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 5.80-µF, parallel-plate, air capacitor has a plate separation of 5.00 mm and is charged to a potential difference of 400 V. Calculate the energy density in the region between the plates, in units of J/m3.

Short Answer

Expert verified

The energy density in the region between the plates is0.028j/m3.

Step by step solution

01

Relation between the electric field and the separated conductors

Give,

It is given a capacitor C of 5.80μF, and is separated by a distance of d=5.00mmor 0.005mand the potential difference is Vab=400.0V.

Now, we know that the electric energy stored in a charged capacitor is equal to the amount of work required to charge it. Therefore, we can calculate the energy densityμby calculating the electric field between the two conductors.

u=12εE2.............(i)

Here,is the electric field related to the separated distance between the two conductors.

Now,can be written as:

E=Vd.........ii

02

Calculating the energy density

Substituting the value of E in equation (i) we get:

u=12εVd2

Putting the values of V,d,εinto the above equation we get:

u=12εVd2=12(8.854×10-12C2/N.m2)400.0V0.005m2=0.028J/m3

Therefore, the charge densityμis0.028J/m3

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two coils are wound around the same cylindrical form. When the current in the first coil is decreasing at a rate of , the induced emf in the second coil has magnitude 1.65×10-3V. (a) What is the mutual inductance of the pair of coils? (b) If the second coil has 25 turns, what is the flux through each turn when the current in the first coil equals 1.20A? (c) If the current in the second coil increases at a rate of 0.360A/s, what is the magnitude of the induced emf in the first coil?

A 10.0cm long solenoid of diameter 0.400 cm is wound uniformly with 800 turns. A second coil with 50 turns is wound around the solenoid at its center. What is the mutual inductance of the combination of the two coils?

A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction pependicurlar to its original direction (Fig. E27.24). The beam travels a distance of 1.10 cm while in the field. What is the magnitude of the magnetic field?

Section 27.2 describes a procedure for finding the direction of the magnetic force using your right hand. If you use the same procedure, but with your left hand, will you get the correct direction for the force? Explain.

In the circuit shown in Fig. E26.20, the rate at which R1 is dissipating electrical energy is 15.0 W. (a) Find R1 and R2. (b) What is the emf of the battery? (c) Find the current through both R2 and the 10.0 Ω resistor. (d) Calculate the total electrical power consumption in all the resistors and the electrical power delivered by the battery. Show that your results are consistent with conservation of energy.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free