Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A sinusoidal electromagnetic wave emitted by a cellular phone has a wavelength of 35.4 cm and an electric-field amplitude of5.40×10-2V/m at adistance of 250 m from the phone. Calculate (a) the frequency of the wave; (b) the magnetic-field amplitude; (c) the intensity of the wave.

Short Answer

Expert verified

a. The frequency of wave is 8.74×108Hz.

b. The amplitude of magnetic-field is 1.8×10-10T.

c. The intensity of wave is 3.87×10-6W/m2.

Step by step solution

01

Define the intensity ( I ) and the formulas.

The power transported per unit area is known as the intensity ( I ).

The formula used to calculate the intensity( I ) is:

I=PA

Where,A is area measured in the direction perpendicular to the energy andP is the power in watts.

The relation between the frequency of wave f, wavelengthλ and speed of lightc is:

c=fλ

And also, I=12ε0cEmax2 . Where, I is the intensity in W/m2and is the speed of light that is equal to 3.0×108m/sand ε0=8.85×10-12C2/N·m2.

The relation between the maximum electric field and maximum magnetic field is:

Bmax=Emaxc

02

Determine frequency of wave.

Given that,λ=35.4×10-2m

The frequency of wave is:

f=cλ=3×10835.4×10-2=8.47×108Hz

Hence, the frequency of wave is 8.47×108Hz.

03

Determine the amplitude of magnetic field.

Given that,Emax=5.4×10-2V/m

The amplitude of magnetic field is:

Bmax=Emaxc=5.4×10-23×108=1.8×10-10T

Hence, the amplitude of magnetic-field is 1.8×10-10T.

04

Determine the intensity of wave.

The intensity of wave:

I=12ε0cEmax2=12×8.854×10-123×1085.4×10-2=3.87×10-6W/m2

Hence, intensity of wave is 3.87×10-6W/m2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Fig. E26.20, the rate at which R1 is dissipating electrical energy is 15.0 W. (a) Find R1 and R2. (b) What is the emf of the battery? (c) Find the current through both R2 and the 10.0 Ω resistor. (d) Calculate the total electrical power consumption in all the resistors and the electrical power delivered by the battery. Show that your results are consistent with conservation of energy.

A rule of thumb used to determine the internal resistance of a source is that it is the open circuit voltage divide by the short circuit current. Is this correct? Why or why not?

In the circuit shown in Fig. E26.47 each capacitor initially has a charge of magnitude 3.50 nC on its plates. After the switch S is closed, what will be the current in the circuit at the instant that the capacitors have lost 80.0% of their initial stored energy?

CALC The region between two concentric conducting spheres with radii and is filled with a conducting material with resistivity ρ. (a) Show that the resistance between the spheres is given by

R=ρ4π(1a-1b)

(b) Derive an expression for the current density as a function of radius, in terms of the potential differenceVab between the spheres. (c) Show that the result in part (a) reduces to Eq. (25.10) when the separation L=b-abetween the spheres is small.

Current passes through a solution of sodium chloride. In

1.00s,2.68×1016Na+ions arrive at the negative electrode and3.92×1016CI-

ions arrive at the positive electrode. (a) What is the current passing between

the electrodes? (b) What is the direction of the current?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free