Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The electric fields at pointdueto the positive chargesandare shown

in Fig. Q21.22. Does the fact that theycross each other violate the statement in

Section 21.6 that electric field lines nevercross? Explain.

Short Answer

Expert verified

Answer

The electric lines that represent the field cannot cross at any given point in space. Of fact, that is not the situation here as the two lines come from two distinct places.

Step by step solution

01

Definition of the electric field

An electric field is an electrical feature correlated with each location in space where charge exists in any form. The value of E represents the size and location of the electric field.

02

Determines how strong the field must be to make this happen

Electric field linesare imaginary lines that represent the strength and direction of an electric field at a certain location in space.

Two electric fields, caused by distinct charged objects, are travelling through point P in the diagram. The resultant of these two electric fields is the net magnitude and direction of these electric fields at this position.

As a result, this location P has a unique electric field, indicating that no electric field lines cross there.

Furthermore, the electric lines that represent the field cannot cross at any given point in space. Of fact, that is not the situation here as the two lines come from two distinct places.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You want to produce three 1.00-mm-diameter cylindrical wires,

each with a resistance of 1.00 Ω at room temperature. One wire is gold, one

is copper, and one is aluminum. Refer to Table 25.1 for the resistivity

values. (a) What will be the length of each wire? (b) Gold has a density of1.93×10-4kgm3.

What will be the mass of the gold wire? If you consider the current price of gold, is

this wire very expensive?

Cyclotrons are widely used in nuclear medicine for producing short-lived radioactive isotopes. These cyclotrons typically accelerate H-(the hydride ion, which has one proton and two electrons) to an energy of 5MeVto20MeV.This ion has a mass very close to that of a proton because the electron mass is negligible about 12000of the proton’s mass. A typical magnetic field in such cyclotrons is 1.9T..(a) What is the speed of a 5.0-MeVH-? (b) If the H-has energy 5.0MeVandB=1.9T what is the radius of this ion’s circulator orbit?

High-voltage power supplies are sometimes designed intentionally to have rather large internal resistance as a safety precaution. Why is such a power supply with a large internal resistance safer than a supply with the same voltage but lower internal resistance?

An open plastic soda bottle with an opening diameter of 2.5cmis placed on a table. A uniform 1.75-Tmagnetic field directed upward and oriented25° from the vertical encompasses the bottle. What is the total magnetic flux through the plastic of the soda bottle?

A circular area with a radius of6.50cmlies in the xy-plane. What is the magnitude of the magnetic flux through this circle due to a uniform magnetic fieldlocalid="1655727900569" B=0.230T(a) in the direction of +z direction; (b) at an angle of53.1°from the direction; (c) in the direction?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free