Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The electric fields at pointdueto the positive chargesandare shown

in Fig. Q21.22. Does the fact that theycross each other violate the statement in

Section 21.6 that electric field lines nevercross? Explain.

Short Answer

Expert verified

Answer

The electric lines that represent the field cannot cross at any given point in space. Of fact, that is not the situation here as the two lines come from two distinct places.

Step by step solution

01

Definition of the electric field

An electric field is an electrical feature correlated with each location in space where charge exists in any form. The value of E represents the size and location of the electric field.

02

Determines how strong the field must be to make this happen

Electric field linesare imaginary lines that represent the strength and direction of an electric field at a certain location in space.

Two electric fields, caused by distinct charged objects, are travelling through point P in the diagram. The resultant of these two electric fields is the net magnitude and direction of these electric fields at this position.

As a result, this location P has a unique electric field, indicating that no electric field lines cross there.

Furthermore, the electric lines that represent the field cannot cross at any given point in space. Of fact, that is not the situation here as the two lines come from two distinct places.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Fig. E26.47 each capacitor initially has a charge of magnitude 3.50 nC on its plates. After the switch S is closed, what will be the current in the circuit at the instant that the capacitors have lost 80.0% of their initial stored energy?

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

In the circuit shown in Fig. E25.30, the 16.0-V battery is removed and reinserted with the opposite polarity, so that its negative terminal is now next to point a. Find (a) the current in the circuit (magnitude anddirection); (b) the terminal voltage Vbaof the 16.0-V battery; (c) the potential difference Vacof point awith respect to point c. (d) Graph the potential rises and drops in this circuit (see Fig. 25.20).

Question: A conducting sphere is placed between two charged parallel plates such as those shown in Figure. Does the electric field inside the sphere depend on precisely where between the plates the sphere is placed? What about the electric potential inside the sphere? Do the answers to these questions depend on whether or not there is a net charge on the sphere? Explain your reasoning.

Question: A high voltage dc power line falls on a car, so the entire metal body of the car is at a potential of with respect to the ground. What happens to the occupants (a) when they are sitting in the car and (b) when they step out of the car? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free