Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One of the hazards facing humans in space is space radiation: high-energy charged particles emitted by the sun. During a solar flare, the intensity of this radiation can reach lethal levels. One proposed method of protection for astronauts on the surface of the moon or Mars is an aligned of large, electrically charged spheres placed high above areas where people live and work. The spheres would produce a strong electric field E S to deflect the charged particles that make up space radiation. The spheres would be similar in construction to a Mylar balloon, with a thin, electrically conducting layer on the outside surface on which a net positive or negative charge would be placed. A typical sphere might be 5 m in diameter. Suppose that to repel electrons in the radiation from a solar flare, each sphere must produce an electric field E S of magnitude 1\( \times \) 106 N/C at 25 m from the center of the sphere. What is the magnitude of E S just outside the surface of such a sphere? (a) 0; (b) 106 N/C; (c) 107 N/C; (d) 108 N/C.

Short Answer

Expert verified

The electric field outside the surface of each sphere is \({10^8}\;{\rm{N}}/{\rm{C}}\) and the option (d) is correct.

Step by step solution

01

Identification of given data

The magnitude of electric field outside the surface of each sphere is\(E = 1 \times {10^6}\;{\rm{N}}/{\rm{C}}\)

The diameter of each sphere is\(d = 5\;{\rm{m}}\)

The distance for electric field from the centre of each sphere is \(D = 25\;{\rm{m}}\)

02

Conceptual Explanation

The number of excess electron is found by calculating the charge due to electric field on the outside of sphere.

03

Determination of electric field outside the surface of sphere

The electric field just outside the surface of each sphere is given below:

\(E = \frac{{kQ}}{{{D^2}}}\)

Here,\(k\)is Coulomb’s constant and its value is\(9 \times {10^9}\;{\rm{N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}\).

Substitute all the values in the above equation.

\(\begin{aligned}1 \times {10^6}\;{\rm{N}}/{\rm{C}} = \frac{{\left( {9 \times {{10}^9}\;{\rm{N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right)Q}}{{{{\left( {25\;{\rm{m}}} \right)}^2}}}\\Q = 0.0694\;{\rm{C}}\end{aligned}\)

The electric field outside the surface of each sphere is given as:

\(\vec E = \frac{{kQ}}{{{{\left( {\frac{d}{2}} \right)}^2}}}\)

Substitute all the values in the above equation.

\(\begin{aligned}\vec E = \frac{{\left( {9 \times {{10}^9}\;{\rm{N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right)\left( {0.0694\;{\rm{C}}} \right)}}{{{{\left( {\frac{{5\;{\rm{m}}}}{2}} \right)}^2}}}\\\vec E = 0.0999 \times {10^9}\;{\rm{N}}/{\rm{C}}\\\vec E \approx {10^8}\;{\rm{N}}/{\rm{C}}\end{aligned}\)

Therefore, the electric field outside the surface of each sphere is \({10^8}\;{\rm{N}}/{\rm{C}}\) and the option (d) is correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a resistor R lies alongeach edge of a cube (12 resistors in all)with connections at the corners. Find theequivalent resistance between two diagonally opposite corners of the cube (pointsa and b in Fig. P26.84).

A 1.50- μF capacitor is charging through a 12.0-Ω resistor using a 10.0-V battery. What will be the current when the capacitor has acquired14of its maximum charge? Will it be14of the maximum current?

Two coils have mutual inductance M=3.25×10-4H. The current in the first coil increases at a uniform rate of 830 A/S. (a) what is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the magnitude of the induced emf in the first coil?

CALC The region between two concentric conducting spheres with radii and is filled with a conducting material with resistivity ρ. (a) Show that the resistance between the spheres is given by

R=ρ4π(1a-1b)

(b) Derive an expression for the current density as a function of radius, in terms of the potential differenceVab between the spheres. (c) Show that the result in part (a) reduces to Eq. (25.10) when the separation L=b-abetween the spheres is small.

BIO The average bulk resistivity of the human body (apart from surface resistance of the skin) is about 5.0Ω·m. The conducting path between the hands can be represented approximately as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible bysoaking the hands in salt water. (a) What is the resistance between the hands if the skin resistance is negligible? (b) What potential difference between thehands is needed for a lethal shock current of 100 mA ? (Note that your result shows that small potential differences produce dangerous currents when the skin is damp.) (c) With the current in part (b),what power is dissipated in the body?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free