Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cardboard tube is wrapped with two windings of insulated wire wound in opposite directions, as shown in Fig. Terminals aand b of winding Amay be connected to a battery through a reversing switch. State whether the induced current in the resistor R is from left to right or from right to left in the following circumstances:

(a) the current in winding A is from ato band is increasing;

(b) the current in winding Ais from bto aand is decreasing;

(c) the current in winding Ais from bto aand is increasing.

Short Answer

Expert verified
  1. From right to left.
  2. From right to left.
  3. From left to right

Step by step solution

01

Concept.

Definitions

Lenz's law: Lenz's law states that an induced current or emf always tends to oppose or cancel out the change that caused it.

Right-hand rule for a magnetic field produced by a current in a loop: When the fingers of your right hand curl in the direction of the current, your right thumb points in the direction of the magnetic field lines.

02

Finding part (a) of the problem.

When the current in winding A is from a to b and is increasing;

Using the right-hand rule on the coil, we curl the fingers of the right hand, and we find that the right thumb is pointing to the left.

Since the current is increasing, the magnetic field is also increasing at the coil of winding B.

Applying Lenz's law, this change in the magnetic field at winding B induces a current in winding B to oppose this change

So, the magnetic field produced by the induced current is to decrease the magnetic field to the left

Thus, the magnetic field produced by the oil of winding B is to the right

Using the right-hand rule, point your right thumb in the direction of the magnetic field to the right, so your right fingers now curl in the direction of the induced current

Following the direction of the induced current, we find it flows through the resistor R from right to left

03

Finding part (b) of the problem.

When the current in winding A is from b to a and is decreasing:

Using the right-hand rule on the coil, we curl the fingers of the right hand, and we find that the right thumb is pointing to the right

Since the current is decreasing, the magnetic field is also decreasing at the coil of winding B.

Applying Lenz's law, this change in the magnetic field at winding B induces a current in winding B to oppose this change.

So, the magnetic field produced by the induced current is to increase the magnetic field to the right

Thus, the magnetic field produced by the coil of winding B is to the right

Using the right-hand rule, point your right thumb in the direction of the magnetic field to the right, so your right fingers now curl in the direction of the induced current.

Following the direction of the induced current, we find it flows through the resistor R from right to left.

04

Finding part (c) of the problem.

When the current in winding A is from b to a and is increasing

Using the right-hand rule on the coil, we curl the fingers of the right hand, and we find that the right thumb is pointing to the right

Since the current is increasing, the magnetic field is also increasing at the coil of winding B.

Applying Lenz's law, this change in the magnetic field at winding B induces a current in winding B to oppose this change

So, the magnetic field produced by the induced current is to decrease the magnetic field to the right

Thus, the magnetic field produced by the coil of winding B is to the left.

Using the right-hand rule, point your right thumb in the direction of the magnetic field to the left, so your right fingers now curl in the direction of the induced current

Following the direction of the induced current, we find it flows through the resistor R from left to right.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Small aircraft often have 24 V electrical systems rather than the 12 V systems in automobiles, even though the electrical power requirements are roughly the same in both applications. The explanation given by aircraft designers is that a 24 V system weighs less than a 12 V system because thinner wires can be used. Explain why this is so.

A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?

Questions: When a thunderstorm is approaching, sailors at sea sometimes observe a phenomenon called โ€œSt. Elmoโ€™s fire,โ€ a bluish flickering light at the tips of masts. What causes this? Why does it occur at the tips of masts? Why is the effect most pronounced when the masts are wet? (Hint: Seawater is a good conductor of electricity.)

When switch Sin Fig. E25.29 is open, the voltmeter V reads 3.08 V. When the switch is closed, the voltmeter reading drops to 2.97 V, and the ammeter A reads 1.65 A. Find the emf, the internal resistance of the battery, and the circuit resistance R. Assume that the two meters are ideal, so they donโ€™t affect the circuit.

Fig. E25.29.

An electrical conductor designed to carry large currents has a circular cross section 2.50 mm in diameter and is 14.0 m long. The resistance between its ends is 0.104ฮฉ. (a) What is the resistivity of the material? (b) If the electric-field magnitude in the conductor is 1.28 V/m, what is the total current? (c) If the material has 8.5ร—1028free electrons per cubic meter, find the average drift speed under the conditions of part (b).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free