Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A high voltage dc power line falls on a car, so the entire metal body of the car is at a potential of with respect to the ground. What happens to the occupants (a) when they are sitting in the car and (b) when they step out of the car? Explain your reasoning.

Short Answer

Expert verified

Answer

(a) The occupant is out of danger when they are sitting in the car.

(b) The occupant in huge danger when they are step out of the car.

Step by step solution

01

Definition of potential difference

The term electric potential is defined as the amount of work done by the unit charge in moving from one point to another against electric field.

The electric field obtained by the relation:

E=-V

Taking integration on side and taking limit from

ABdV=-EdrVB-VA=-0dr+CVB-VA=CVB-VA=C

02

Determine the answer of the part (a)

(a) There is no any charge flow between outer and inner metal surface of the car that’s why occupant out of danger when they are sitting in the car. This is because the charge flows out of the metal body of the car so that occupants are at the same potential.

Hence, the occupant is out of danger when they are sitting in the car.

03

Determine the answer of the part (b)

(b) There is charge flow on the outer metal surface of the car body that’s why occupant in huge danger when they step out of the car. This is because the occupant will be in touch of the car and the ground while stepping out thus making a short circuit path.

Hence, the occupant in huge danger when they are step out of the car.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Fig. E26.49, C = 5.90 mF, Ԑ = 28.0 V, and the emf has negligible resistance. Initially, the capacitor is uncharged and the switch S is in position 1. The switch is then moved to position 2 so that the capacitor begins to charge. (a) What will be the charge on the capacitor a long time after S is moved to position 2? (b) After S has been in position 2 for 3.00 ms, the charge on the capacitor is measured to be 110 mC What is the value of the resistance R? (c) How long after S is moved to position 2 will the charge on the capacitor be equal to 99.0% of the final value found in part (a)?

A battery-powered global positioning system (GPS) receiver operating 9.0 V on draws a current of 0.13 A. How much electrical energy does it consume during 30 minutes?

An alpha particle (a He nucleus containing two protons and two neutrons and having a mass of 6.64×10-7kg) travelling horizontally at 35.6km/senter a uniform, vertical,1.80-T magnetic field.(a) What is the diameter of the path followed by this alpha particle? (b) what effect does the magnetic field have on the speed of the particle? (c) What are the magnitude and direction of the acceleration of the alpha particle while it is in the magnetic field? (d) explain why the speed of the particle does not change even though an unbalanced external force acts on it.

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

In the circuit, in Fig. E26.47 the capacitors are initially uncharged, the battery has no internal resistance, and the ammeter is idealized. Find the ammeter reading (a) just after the switch S is closed and (b) after S has been closed for a very long time.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free