Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The power of a certain CD player operating at 120 V rms is 20.0 W. Assuming that the CD player behaves like a pure resistor, find (a) the maximum instantaneous power; (b) the rms current; (c) the resistance of this player.

Short Answer

Expert verified

a) The maximum instantaneous power of the CD Player is 40 W

b) The RMS value of current is 0.167 A

c) The resistance of the CD player is 717 Ω

Step by step solution

01

concept

Resistance is a measure of opposition to the flow of current in a closed electrical circuit. It is measured in Ohm (Ω).

Root Mean Square (RMS) value is defined as the effective value of an alternating quantity. It is assumed as the equivalent steady value which will give the same effect.

02

given values

Power of CD Player, Pav = 20 W

Operating RMS voltage, Vrms = 120 V

03

Determination of Maximum Instantaneous Power

The maximum instantaneous power of an AC circuit is twice its average power:

Pmax=2Pavg=2*20=40W

Therefore, the maximum instantaneous power of the CD Player is 40 W.

04

Determination of RMS Current

The RMS value of current can be found out using relation of the average power of the AC source:

Pavg=Irms.VrmsIrms=PavgVrms=20W120V=0.167A

Therefore, the RMS value of current is 0.167 A.

05

Determination of Capacitive reactance

The resistance of the CD player can be found out using the relation of the average power of the AC source:

Pavg=I2rms.RR=PavgI2rms=20W0.167A2=717Ω

Therefore, the resistance of the CD player is 717 Ω.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The current in a wire varies with time according to the relationship

I=55A-(0.65As2)t2. (a) How many coulombs of charge pass a cross section of the wire in

the time interval between t=0and role="math" localid="1655721302619" t=8.0s? (b) What constant current would transport the

same charge in the same time interval?

A 140-g ball containing excess electrons is dropped into a 110-m vertical shaft. At the bottom of the shaft, the ball suddenly enters a uniform horizontal magnetic field that has magnitude 0.300 T and direction from east to west. If air resistance is negligibly small, find the magnitude ond direction of the force that this magnetic field exerts on the ball just as it enters the field.

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

An electron moves at 1.40×106m/sthrough a regionin which there is a magnetic field of unspecified direction and magnitude 7.40×10-2T. (a) What are the largest and smallest possible magnitudes of the acceleration of the electron due to the magnetic field? (b) If the actual acceleration of the electron is one-fourth of the largest magnitude in part (a), what is the angle
between the electron velocity and the magnetic field?

The heating element of an electric dryer is rated at 4.1 kW when connected to a 240-V line. (a) What is the current in the heating element? Is 12-gauge wire large enough to supply this current? (b) What is the resistance of the dryer’s heating element at its operating temperature? (c) At 11 cents per kWh, how much does it cost per hour to operate the dryer?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free