Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You want to double the resonance angular frequency of an L-R-C series circuit by changing only the pertinent circuit elements all by the same factor. (a) Which ones should you change? (b) By what factor should you change them?

Short Answer

Expert verified

a) To double the angular frequency, we change the values of inductor and capacitor.

b) The inductance L and the capacitance C must be halved to their initial values.

Step by step solution

01

Step-1: Formulas used  

Resonance angular frequency is given by

ω=1LC . where L is the inductance and C is the capacitance.

02

Step-2: Parameters required and calculations for resonance angular frequency

The angular frequency is independent of the resistance R, so no need to change the resistance. The angular frequency is related to the Inductance L and the Capacitance C only.

ω1=1LC

Now, the new resonance frequency

role="math" localid="1663916144195" ω2=2(ω1)ω2=2LC1LfCf=2LCLfCf=LC4LfCf=L2C2

Therefore, a) To double the angular frequency, we change the values of inductor and capacitor. b) The inductance L and the capacitance C must be halved to their initial values.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The capacity of a storage battery, such as those used in automobile electrical systems, is rated in ampere-hours .(Ah)A50AhA battery can supply a current of50Afor 1.0h,or25Afor2.0hor for and so on. (a) What total energy can be supplied by a 12-v,60-Ahbattery if its internal resistance is negligible? (b) What volume (in litres) of gasoline has a total heat of combustion equal to the energy obtained in part (a)? (See Section 17.6; the density of gasoline is 900kg/m3.) (c) If a generator with an average electrical power output ofrole="math" localid="1655719210000" 0.45kW is connected to the battery, how much time will be required for it to charge the battery fully?

A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?

BIO The average bulk resistivity of the human body (apart from surface resistance of the skin) is about 5.0Ω·m. The conducting path between the hands can be represented approximately as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible bysoaking the hands in salt water. (a) What is the resistance between the hands if the skin resistance is negligible? (b) What potential difference between thehands is needed for a lethal shock current of 100 mA ? (Note that your result shows that small potential differences produce dangerous currents when the skin is damp.) (c) With the current in part (b),what power is dissipated in the body?

The potential difference across the terminals of a battery is 8.40 V when there is a current of 1.50 A in the battery from the negative to the positive terminal. When the current is 3.50 A in the reverse direction, the potential difference becomes10.20 V . (a) What is the internal resistance of the battery? (b) What is the emf of the battery?

In the circuit in Fig. E25.47, find (a) the rate of conversion of internal (chemical) energy to electrical energy within the battery; (b) the rate of dissipation of electrical energy in the battery; (c) the rate of dissipation of electrical energy in the external resistor.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free