Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You want to double the resonance angular frequency of an L-R-C series circuit by changing only the pertinent circuit elements all by the same factor. (a) Which ones should you change? (b) By what factor should you change them?

Short Answer

Expert verified

a) To double the angular frequency, we change the values of inductor and capacitor.

b) The inductance L and the capacitance C must be halved to their initial values.

Step by step solution

01

Step-1: Formulas used  

Resonance angular frequency is given by

ω=1LC . where L is the inductance and C is the capacitance.

02

Step-2: Parameters required and calculations for resonance angular frequency

The angular frequency is independent of the resistance R, so no need to change the resistance. The angular frequency is related to the Inductance L and the Capacitance C only.

ω1=1LC

Now, the new resonance frequency

role="math" localid="1663916144195" ω2=2(ω1)ω2=2LC1LfCf=2LCLfCf=LC4LfCf=L2C2

Therefore, a) To double the angular frequency, we change the values of inductor and capacitor. b) The inductance L and the capacitance C must be halved to their initial values.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit of Fig. E25.30, the 5.0 Ω resistor is removed and replaced by a resistor of unknown resistance R. When this is done, an ideal voltmeter connected across the points band creads 1.9 V. Find (a) the current in the circuit and (b) the resistance R. (c) Graph the potential rises and drops in this circuit (see Fig. 25.20).

Copper has 8.5×1022free electrons per cubic meter. A 71.0-cm

length of 12-gauge copper wire that is 2.05 mm in diameter carries 4.85 A of

current. (a) How much time does it take for an electron to travel the length

of the wire? (b) Repeat part (a) for 6-gauge copper wire (diameter 4.12 mm)

of the same length that carries the same current. (c) Generally speaking,

how does changing the diameter of a wire that carries a given amount of

current affect the drift velocity of the electrons in the wire?

A rule of thumb used to determine the internal resistance of a source is that it is the open circuit voltage divide by the short circuit current. Is this correct? Why or why not?

A 10.0cm long solenoid of diameter 0.400 cm is wound uniformly with 800 turns. A second coil with 50 turns is wound around the solenoid at its center. What is the mutual inductance of the combination of the two coils?

A light bulb glows because it has resistance. The brightness of a light bulb increases with the electrical power dissipated in the bulb. (a) In the circuit shown in Fig. Q25.14a, the two bulbs A and B are identical. Compared to bulb A, does bulb B glow more brightly, just as brightly, or less brightly? Explain your reasoning. (b) Bulb B is removed from the circuit and the circuit is completed as shown in Fig. Q25.14b. Compared to the brightness of bulb A in Fig. Q25.14a, does bulb A now glow more brightly, just as brightly, or less brightly? Explain your reasoning

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free