Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You want to double the resonance angular frequency of an L-R-C series circuit by changing only the pertinent circuit elements all by the same factor. (a) Which ones should you change? (b) By what factor should you change them?

Short Answer

Expert verified

a) To double the angular frequency, we change the values of inductor and capacitor.

b) The inductance L and the capacitance C must be halved to their initial values.

Step by step solution

01

Step-1: Formulas used  

Resonance angular frequency is given by

ω=1LC . where L is the inductance and C is the capacitance.

02

Step-2: Parameters required and calculations for resonance angular frequency

The angular frequency is independent of the resistance R, so no need to change the resistance. The angular frequency is related to the Inductance L and the Capacitance C only.

ω1=1LC

Now, the new resonance frequency

role="math" localid="1663916144195" ω2=2(ω1)ω2=2LC1LfCf=2LCLfCf=LC4LfCf=L2C2

Therefore, a) To double the angular frequency, we change the values of inductor and capacitor. b) The inductance L and the capacitance C must be halved to their initial values.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free