Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You want to double the resonance angular frequency of an L-R-C series circuit by changing only the pertinent circuit elements all by the same factor. (a) Which ones should you change? (b) By what factor should you change them?

Short Answer

Expert verified

a) To double the angular frequency, we change the values of inductor and capacitor.

b) The inductance L and the capacitance C must be halved to their initial values.

Step by step solution

01

Step-1: Formulas used  

Resonance angular frequency is given by

ω=1LC . where L is the inductance and C is the capacitance.

02

Step-2: Parameters required and calculations for resonance angular frequency

The angular frequency is independent of the resistance R, so no need to change the resistance. The angular frequency is related to the Inductance L and the Capacitance C only.

ω1=1LC

Now, the new resonance frequency

role="math" localid="1663916144195" ω2=2(ω1)ω2=2LC1LfCf=2LCLfCf=LC4LfCf=L2C2

Therefore, a) To double the angular frequency, we change the values of inductor and capacitor. b) The inductance L and the capacitance C must be halved to their initial values.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The definition of resistivity (ρ=EJ) implies that an electrical field exist inside a conductor. Yet we saw that in chapter 21 there can be no electrostatic electric field inside a conductor. Is there can be contradiction here? Explain.

When switch Sin Fig. E25.29 is open, the voltmeter V reads 3.08 V. When the switch is closed, the voltmeter reading drops to 2.97 V, and the ammeter A reads 1.65 A. Find the emf, the internal resistance of the battery, and the circuit resistance R. Assume that the two meters are ideal, so they don’t affect the circuit.

Fig. E25.29.

Two copper wires with different diameter are joined end to end. If a current flow in the wire combination, what happens to electrons when they move from the large diameter wire into the smaller diameter wire? Does their drift speed increase, decrease, or stay the same? If the drift speed change, what is the role the force that causes the change? Explain your reasoning.

High-voltage power supplies are sometimes designed intentionally to have rather large internal resistance as a safety precaution. Why is such a power supply with a large internal resistance safer than a supply with the same voltage but lower internal resistance?

An electron moves at 1.40×106m/sthrough a regionin which there is a magnetic field of unspecified direction and magnitude 7.40×10-2T. (a) What are the largest and smallest possible magnitudes of the acceleration of the electron due to the magnetic field? (b) If the actual acceleration of the electron is one-fourth of the largest magnitude in part (a), what is the angle
between the electron velocity and the magnetic field?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free