Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You want to double the resonance angular frequency of an L-R-C series circuit by changing only the pertinent circuit elements all by the same factor. (a) Which ones should you change? (b) By what factor should you change them?

Short Answer

Expert verified

a) To double the angular frequency, we change the values of inductor and capacitor.

b) The inductance L and the capacitance C must be halved to their initial values.

Step by step solution

01

Step-1: Formulas used  

Resonance angular frequency is given by

ω=1LC . where L is the inductance and C is the capacitance.

02

Step-2: Parameters required and calculations for resonance angular frequency

The angular frequency is independent of the resistance R, so no need to change the resistance. The angular frequency is related to the Inductance L and the Capacitance C only.

ω1=1LC

Now, the new resonance frequency

role="math" localid="1663916144195" ω2=2(ω1)ω2=2LC1LfCf=2LCLfCf=LC4LfCf=L2C2

Therefore, a) To double the angular frequency, we change the values of inductor and capacitor. b) The inductance L and the capacitance C must be halved to their initial values.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An 18-gauge copper wire (diameter 1.02 mm) carries a current

with a current density of 3.2×106Am2. The density of free electrons for

copper is8.5×1028electrons per cubic meter. Calculate (a) the current in

the wire and (b) the drift velocity of electrons in the wire.

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

In the circuit shown in Fig. E25.30, the 16.0-V battery is removed and reinserted with the opposite polarity, so that its negative terminal is now next to point a. Find (a) the current in the circuit (magnitude anddirection); (b) the terminal voltage Vbaof the 16.0-V battery; (c) the potential difference Vacof point awith respect to point c. (d) Graph the potential rises and drops in this circuit (see Fig. 25.20).

An electron at point in figure has a speed v0=1.41×106m/s. Find (a) the magnetic field that will cause the electron to follow the semicircular path from to and (b) The time required for the electron to move fromAtoB.

Question: A positive point charge is placed near a very large conducting plane. A professor of physics asserted that the field caused by this configuration is the same as would be obtained by removing the plane and placing a negative point charge of equal magnitude in the mirror image position behind the initial position of the plane. Is this correct? Why or why not?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free