Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A conducting sphere is placed between two charged parallel plates such as those shown in Figure. Does the electric field inside the sphere depend on precisely where between the plates the sphere is placed? What about the electric potential inside the sphere? Do the answers to these questions depend on whether or not there is a net charge on the sphere? Explain your reasoning.

Short Answer

Expert verified

Answer

The electric field inside the sphere does not depend on precisely where between the plates the sphere is placed. Electric potential inside the sphere is never changed. No, the net charge is not required to answer the question.

Step by step solution

01

Definition of electric potential

The term electric potential is defined as the amount of work done by the unit charge in moving from one point to another against electric field.

The electric field obtained by the relationE=-~NV taking both sides line integral

E.dl=-V·E.dl=0

02

Explain the answer for the questions

Conclude that work done is not depend on path and is zero for closed path. And no, the electric field inside the sphere depend on precisely where between the plates the sphere is placed.

V=Edr=0dr=c

Due to above expression conclude that electric potential is constant and equal to zero moreover is not depend upon the net charge on the sphere.

Hence, the electric field inside the sphere does not depend on precisely where between the plates the sphere is placed. Electric potential inside the sphere is never changed. No, the net charge is not required to answer the question.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

Consider the circuit of Fig. E25.30. (a)What is the total rate at which electrical energy is dissipated in the 5.0-Ω and 9.0-Ω resistors? (b) What is the power output of the 16.0-V battery? (c) At what rate is electrical energy being converted to other forms in the 8.0-V battery? (d) Show that the power output of the 16.0-V battery equals the overall rate of consumption of electrical energy in the rest of the circuit.

Fig. E25.30.

Batteries are always labeled with their emf; for instances an AA flashlight battery is labelled “ 1.5 V ”. Would it also be appropriate to put a label on batteries starting how much current they provide? Why or why not?

Suppose a resistor R lies alongeach edge of a cube (12 resistors in all)with connections at the corners. Find theequivalent resistance between two diagonally opposite corners of the cube (pointsa and b in Fig. P26.84).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free