Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An inductor, a capacitor, and a resistor are all connected in series across an ac source. If the resistance, inductance, and capacitance are all doubled, by what factor does each of the following quantities change? Indicate whether they increase or decrease: (a) the resonance angular frequency; (b) the inductive reactance; (c) the capacitive reactance. (d) Does the impedance double?

Short Answer

Expert verified

a) Resonance angular frequency is halved

b) The inductive reactance doubles

c) Capacitive reactance halves and

d) Z increases without doubling.

Step by step solution

01

Step-1: Formulas used  

Resonance angular frequency is given by ω=1LC.The reactance are given by XL=ωLfor inductor and XC=1ωCfor capacitor.

Z=R2+(XL-XC))2, where Z is the impedance

02

Step-2: Calculations for resonance angular frequency

ω1=1LC

Now, all the parameters are doubled

R2=2R1C2=2C1L2=2L1

Find the new resonance frequency

ω=12L2C=14LC=12LC=ω12

Therefore, resonance angular frequency is halved.

03

Step-3: Calculations of capacitive reactance, inductive reactance and impedance.

First calculate the inductive reactance;

XL2=ωL2=ω2L1=2XL1

And then the capacitive reactance;

XC2=1ωC2=1ω2C1=XC12

Then calculate the impedance;

Z=R2+XL-XC2Z=2R2+2XL-XC)22Z=2R2+XL-XC)42

Therefore, a) resonance angular frequency is halved, b) the inductive reactance doubles, c) capacitive reactance halves and d) Z increases without doubling.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?

The potential difference across the terminals of a battery is 8.40 V when there is a current of 1.50 A in the battery from the negative to the positive terminal. When the current is 3.50 A in the reverse direction, the potential difference becomes10.20 V . (a) What is the internal resistance of the battery? (b) What is the emf of the battery?

A 1.50-mcylindrical rod of diameter 0.500cmis connected to

a power supply that maintains a constant potential difference of 15.0Vacross

its ends, while an ammeter measures the current through it. You observe that

at room temperature (20.0C)the ammeter reads 18.5Awhile at 92.0Cit

reads 17.2A. You can ignore any thermal expansion of the rod. Find (a) the

resistivity at and (b) the temperature coefficient of resistivity at for the material of the rod.

Light Bulbs in Series and in Parallel. Two light bulbs have constant resistances of 400Ωand 800Ω. If the two light bulbs are connected in series across a 120Vline, find (a) the current through each bulb; (b) the power dissipated in each bulb; (c) the total power dissipated in both bulbs. The two light bulbs are now connected in parallel across the120Vline. Find (d) the current through each bulb; (e) the power dissipated in each bulb; (f) the total power dissipated in both bulbs. (g) In each situation, which of the two bulbs glows the brightest? (h) In which situation is there a greater total light output from both bulbs combined?

(a) At room temperature, what is the strength of the electric field in a

12-gauge copper wire (diameter 2.05mm) that is needed to cause a 4.50-A

current to flow? (b) What field would be needed if the wire were made of silver

instead?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free