Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the circuit shown in Fig. E26.17,the voltage across the2Ωresistor is 12 V. What are the emf of the battery and the current through the6Ωresistor?

Short Answer

Expert verified

the EMF of the battery is 18.00V

The Current in 6 ohms resistor is 3A

Step by step solution

01

Step 1:About Ohms law

Ohm's law states that thecurrentthrough aconductorbetween two points is directlyproportionalto thevoltageacross the two points. Introducing the constant of proportionality, theresistance, one arrives at the usual mathematical equation that describes this relationship:

Given
Let us label the next on the

R1=1.0ΩR2=2.0ΩandR3=6.0Ω

-R2isV2=12,V

The voltage across R2 is Vg = 12.0 V

02

Determine the EMF of the battery and the cureent through 6 ohms resistor

Solution

thecurrentI3andtheemfofthebattery8-ThetworesistorsR1andR2areinseriesandthecurrent

through these two resistors is the same through every resistor and equals the current through the combination, and We could

calculate this current using Ohm's law

R1andR2l12=l1=II2=V2R2122=6.0A

AsshOWnbythe?gure,thecombinationR12isinparallelwithR3andthepotentialdifferenceVacrossresistorsconnected
in the parallel is the same for every resistor and equals the potential difference across the combination as next
V12=V3=V123
The combination voltage V123isthevoltagedropofthebatteryandi^=v123 as the internal resistance of the battery is zero,therefore the emf of the battery equals where We can get the combination voltage Vlz by Ohm's law in the next form
m we parallel IS me same nor every resuswr ano equals me pomenual omerence across me comomauon as The combination voltage V123 is the voltage drop of the

battery and as the internal resistance of the battery is zero,

therefore the emf of the battery equalsV12-V3=V123where We can get the combination voltage V12 by Ohm's law in the

next form

V12-V3=V123i^=v123=I12(R1+R2)=6(1+2)=18V

Therefore the EMF of the battery is 18.00V

Now We can use the value of V to get the currentI3 where we can plug our values for V3 and R3 into Ohm's law to get I3

I3=V3R3=186=3A

The Current in 6 ohms resistor is 3A

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You connect a battery, resistor, and capacitor as in Fig. 26.20a, where R = 12.0 Ω and C = 5.00 x 10-6 F. The switch S is closed at t = 0. When the current in the circuit has a magnitude of 3.00 A, the charge on the capacitor is 40.0 x 10-6 C. (a) What is the emf of the battery? (b) At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10-6 C? (c) When the current has magnitude 3.00 A, at what rate is energy being (i) stored in the capacitor, (ii) supplied by the battery

Electric eels generate electric pulses along their skin that can be used to stun an enemy when they come into contact with it. Tests have shown that these pulses can be up to 500V and produce currents of 80mA(or even larger). A typical pulse lasts for 10ms. What power and how much energy are delivered to the unfortunate enemy with a single pulse, assuming a steady current?

An alpha particle (a He nucleus containing two protons and two neutrons and having a mass of 6.64×10-7kg) travelling horizontally at 35.6km/senter a uniform, vertical,1.80-T magnetic field.(a) What is the diameter of the path followed by this alpha particle? (b) what effect does the magnetic field have on the speed of the particle? (c) What are the magnitude and direction of the acceleration of the alpha particle while it is in the magnetic field? (d) explain why the speed of the particle does not change even though an unbalanced external force acts on it.

The text states that good thermal conductors are also good electrical conductors. If so, why don’t the cords used to connect toasters, irons, and similar heat-producing appliances get hot by conduction of heat from the heating element?

(a) At room temperature, what is the strength of the electric field in a

12-gauge copper wire (diameter 2.05mm) that is needed to cause a 4.50-A

current to flow? (b) What field would be needed if the wire were made of silver

instead?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free