Chapter 4: Q17E (page 842)
In household wiring, copper wire 2.05 mm in diameter is often used. Find the resistance of a 24.0-m length of this wire.
Short Answer
Resistance of wire
Chapter 4: Q17E (page 842)
In household wiring, copper wire 2.05 mm in diameter is often used. Find the resistance of a 24.0-m length of this wire.
Resistance of wire
All the tools & learning materials you need for study success - in one app.
Get started for freeThe magnetic force on a moving charged particle is always perpendicular to the magnetic field. Is the trajectory of a moving charged particle always perpendicular to the magnetic field lines? Explain your reasoning.
Consider the circuit of Fig. E25.30. (a)What is the total rate at which electrical energy is dissipated in the 5.0-Ω and 9.0-Ω resistors? (b) What is the power output of the 16.0-V battery? (c) At what rate is electrical energy being converted to other forms in the 8.0-V battery? (d) Show that the power output of the 16.0-V battery equals the overall rate of consumption of electrical energy in the rest of the circuit.
Fig. E25.30.
You connect a battery, resistor, and capacitor as in Fig. 26.20a, where R = 12.0 Ω and C = 5.00 x 10-6 F. The switch S is closed at t = 0. When the current in the circuit has a magnitude of 3.00 A, the charge on the capacitor is 40.0 x 10-6 C. (a) What is the emf of the battery? (b) At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10-6 C? (c) When the current has magnitude 3.00 A, at what rate is energy being (i) stored in the capacitor, (ii) supplied by the battery
A 1500-W electric heater is plugged into the outlet of a 120-V circuit that has a 20-A circuit breaker. You plug an electric hair dryer into the same outlet. The hair dryer has power settings of 600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer on the 600-W setting and increase the power setting until the circuit breaker trips. What power setting caused the breaker to trip?
Questions: A conductor that carries a net charge has a hollow, empty cavity in its interior. Does the potential vary from point to point within the material of the conductor? What about within the cavity? How does the potential inside the cavity compare to the potential within the material of the conductor?
What do you think about this solution?
We value your feedback to improve our textbook solutions.