Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Fields from a Light Bulb. We can reasonably model a 75 - W incandescent light bulb as a sphere 6.0 cm in diameter. Typically, only about 5% of the energy goes to visible light; the rest goes largely to nonvisible infrared radiation. (a) What is the visible-light intensity (in ) at the surface of the bulb? (b) What are the amplitudes of the electric and magnetic fields at this surface, for a sinusoidal wave with this intensity?

Short Answer

Expert verified

a. The intensity of visible-light at the surface of the bulb 330W/m2 .

b. The amplitudes of the electric and magnetic fields at the surface, for a sinusoidal wave with intensity 330W/m2are500V/m and 1.7×10-6Trespectively.

Step by step solution

01

Define the intensity and define the formulas.

The power transported per unit area is known as the intensity .

The formula used to calculate the intensity ( l ) is:

l=PA

Where, A is area measured in the direction perpendicular to the energy and P is the power in watts.

The formula used to determine the amplitude of electric and magnetic fields of the wave are:

Emax=2lε0CBmax=Emaxc

Where,ε0=8.85×10-12C/N.m2 and is the speed of light that is equal to 3.0×108m/s.

02

Determine the intensity of visible-light.

Given that,

P=75Wr=3×10-2m

Given that, only 5% of the energy goes to visible-light. So, we use the 5% of power ( P ) .

The formula used to calculate the intensity ( l ) is:

I=PA=5%P4π3×102=(0.05)×75113×104=331W/m2

Hence, the intensity of visible-light at the surface of the bulb330W/m2 .

03

Determine the amplitudes of electric and magnetic fields.

The amplitude of electric field is:

Emax=2Iε0c

Substitute the values

Emax=2×(331)8.85×10123×108=500V/m

The amplitude of magnetic field is:

Bmax=Emaxc

Substitute the values

Bmax=5003×108=1.7×106T

Hence, the amplitudes of the electric and magnetic fields at the surface, for a sinusoidal wave with intensity 330W/m2are 500 V/m and1.7×10-6T respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a resistor R lies alongeach edge of a cube (12 resistors in all)with connections at the corners. Find theequivalent resistance between two diagonally opposite corners of the cube (pointsa and b in Fig. P26.84).

The definition of resistivity (ρ=EJ) implies that an electrical field exist inside a conductor. Yet we saw that in chapter 21 there can be no electrostatic electric field inside a conductor. Is there can be contradiction here? Explain.

You want to produce three 1.00-mm-diameter cylindrical wires,

each with a resistance of 1.00 Ω at room temperature. One wire is gold, one

is copper, and one is aluminum. Refer to Table 25.1 for the resistivity

values. (a) What will be the length of each wire? (b) Gold has a density of1.93×10-4kgm3.

What will be the mass of the gold wire? If you consider the current price of gold, is

this wire very expensive?

A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction pependicurlar to its original direction (Fig. E27.24). The beam travels a distance of 1.10 cm while in the field. What is the magnitude of the magnetic field?

A typical small flashlight contains two batteries, each having an emf of1.5V, connected in series with a bulb having resistance17Ω. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for1.5hwhat is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free