Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Fields from a Light Bulb. We can reasonably model a 75 - W incandescent light bulb as a sphere 6.0 cm in diameter. Typically, only about 5% of the energy goes to visible light; the rest goes largely to nonvisible infrared radiation. (a) What is the visible-light intensity (in ) at the surface of the bulb? (b) What are the amplitudes of the electric and magnetic fields at this surface, for a sinusoidal wave with this intensity?

Short Answer

Expert verified

a. The intensity of visible-light at the surface of the bulb 330W/m2 .

b. The amplitudes of the electric and magnetic fields at the surface, for a sinusoidal wave with intensity 330W/m2are500V/m and 1.7×10-6Trespectively.

Step by step solution

01

Define the intensity and define the formulas.

The power transported per unit area is known as the intensity .

The formula used to calculate the intensity ( l ) is:

l=PA

Where, A is area measured in the direction perpendicular to the energy and P is the power in watts.

The formula used to determine the amplitude of electric and magnetic fields of the wave are:

Emax=2lε0CBmax=Emaxc

Where,ε0=8.85×10-12C/N.m2 and is the speed of light that is equal to 3.0×108m/s.

02

Determine the intensity of visible-light.

Given that,

P=75Wr=3×10-2m

Given that, only 5% of the energy goes to visible-light. So, we use the 5% of power ( P ) .

The formula used to calculate the intensity ( l ) is:

I=PA=5%P4π3×102=(0.05)×75113×104=331W/m2

Hence, the intensity of visible-light at the surface of the bulb330W/m2 .

03

Determine the amplitudes of electric and magnetic fields.

The amplitude of electric field is:

Emax=2Iε0c

Substitute the values

Emax=2×(331)8.85×10123×108=500V/m

The amplitude of magnetic field is:

Bmax=Emaxc

Substitute the values

Bmax=5003×108=1.7×106T

Hence, the amplitudes of the electric and magnetic fields at the surface, for a sinusoidal wave with intensity 330W/m2are 500 V/m and1.7×10-6T respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ordinary household electric lines in North America usually operate at 120 V . Why is this a desirable voltage, rather than a value considerably larger or smaller? On the other hand, automobiles usually have 12 V electrical systems. Why is this a desirable voltage?

An electron moves at 1.40×106m/sthrough a regionin which there is a magnetic field of unspecified direction and magnitude 7.40×10-2T. (a) What are the largest and smallest possible magnitudes of the acceleration of the electron due to the magnetic field? (b) If the actual acceleration of the electron is one-fourth of the largest magnitude in part (a), what is the angle
between the electron velocity and the magnetic field?

A horizontal rectangular surface has dimensions 2.80cmby 3.20cmand is in a uniform magnetic field that is directed at an angle of 30.0°above the horizontal. What must the magnitude of the magnetic field be to produce a flux of 3.10×10-4Wb through the surface?

When switch Sin Fig. E25.29 is open, the voltmeter V reads 3.08 V. When the switch is closed, the voltmeter reading drops to 2.97 V, and the ammeter A reads 1.65 A. Find the emf, the internal resistance of the battery, and the circuit resistance R. Assume that the two meters are ideal, so they don’t affect the circuit.

Fig. E25.29.

A particle with mass1.81×10-3kgand a charge of has1.22×10-8C, at a given instant, a velocityV=(3.00×104m/s).What are the magnitude and direction of the particle’s acceleration produced by a uniform magnetic fieldB=(1.63T)i+(0.980T)j^?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free