Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The energy that can be extracted from a storage battery is always less than the energy that goes into it while it is being charged. Why?

Short Answer

Expert verified

The battery has its own internal resistance, there is always energy dissipation during charging due to its internal resistance.

Step by step solution

01

Power and energy of an electrical circuit

Electrical energy is the product of power multiplied by the length of time it was consumed.

Energy(E)=power(P)xtime(t)Power(P)=voltage(V)xcurrent(I)

02

Determine the power dissipation and energy

The batteryhas internal resistance.

Let r be the internal resistance of the battery and I be the current flowing during charging.

Therefore, the power dissipation to Its internal resistance is

P=I2r

And the total energy dissipation during time role="math" localid="1655782126418" tis

E=I2rt

Therefore, there is always energy dissipation during charging due to its internal resistance.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We have seen that a coulomb is an enormous amount of charge; it is virtually impossible to place a charge of 1 C on an object. Yet, a current of 10A,10C/sis quite reasonable. Explain this apparent discrepancy.

Could an accelerator be built in which all the forces on the particles, for steering and for increasing speed, are magnetic forces? Why or why not?

(a) What is the potential difference Vadin the circuit of Fig. P25.62? (b) What is the terminal voltage of the 4.00-Vbattery? (c) A battery with emf and internal resistance 0.50Ωis inserted in the circuit at d, with its negative terminal connected to the negative terminal of the 8.00-Vbattery. What is the difference of potential Vbcbetween the terminals of the 4.00-Vbattery now?

In the circuit shown in Fig. E26.49, C = 5.90 mF, Ԑ = 28.0 V, and the emf has negligible resistance. Initially, the capacitor is uncharged and the switch S is in position 1. The switch is then moved to position 2 so that the capacitor begins to charge. (a) What will be the charge on the capacitor a long time after S is moved to position 2? (b) After S has been in position 2 for 3.00 ms, the charge on the capacitor is measured to be 110 mC What is the value of the resistance R? (c) How long after S is moved to position 2 will the charge on the capacitor be equal to 99.0% of the final value found in part (a)?

The text states that good thermal conductors are also good electrical conductors. If so, why don’t the cords used to connect toasters, irons, and similar heat-producing appliances get hot by conduction of heat from the heating element?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free