Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A negative charge -Q is placed inside the cavity of a hollow metal solid. The outside of the solid is grounded by connecting a conducting wire between it and the earth. Is any excess charge induced on the inner surface of the metal? Is there any excess charge on the outside surface of the metal? Why or why not? Would someone outside the solid measure an electric field due to the charge -Q? Is it reasonable to say that the grounded conductor has shielded the region outside the conductor from the effects of the charge -Q? In principle, could the same thing be done for gravity? Why or why not?

Short Answer

Expert verified

An excess charge is there in inner surface and no charge on the surface due to the ground, therefore the electric field outside the sphere cannot be measured. and the gravity will not be enough to act as a ground.

Step by step solution

01

Step 1:

the electric field inside the conductor is zero because the charge in the cavity is negative charge. if the inner surface of the conductor must have the opposite charge of the cavity, then zero electric field inside the conductor is there. Thus, it has an excess of electrons

02

Step 2

the surface of the sphere is connected to the ground because the earth is a good conductor so the excess electrons on the surface of the sphere will flow to the ground. Thus, there is no excess charge on the outside surface of the metal. That is shown in the diagram.

the excess electrons on the surface are removed by the ground and the net charge on the sphere will be zero thus, no electric field is applied outside the sphere. Thus, outside the solid measure there is no electric field due to the charge.

the electron's mass is very small and the gravity depends on the mass of the elements thus it will be difficult for gravitational force to act as a ground or shield. Thus, the same thing cannot be done for gravity

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two copper wires with different diameter are joined end to end. If a current flow in the wire combination, what happens to electrons when they move from the large diameter wire into the smaller diameter wire? Does their drift speed increase, decrease, or stay the same? If the drift speed change, what is the role the force that causes the change? Explain your reasoning.

The magnetic force on a moving charged particle is always perpendicular to the magnetic fieldB. Is the trajectory of a moving charged particle always perpendicular to the magnetic field lines? Explain your reasoning.

High-voltage power supplies are sometimes designed intentionally to have rather large internal resistance as a safety precaution. Why is such a power supply with a large internal resistance safer than a supply with the same voltage but lower internal resistance?

A particle with charge-5.60nCis moving in a uniform magnetic fieldrole="math" localid="1655717557369" B=-(1.25T)k^

The magnetic force on the particle is measured to berole="math" localid="1655717706597" F=-(3.40×10-7N)i^-(7.40×10-7N)j^ (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there
components of the velocity that are not determined by the measurement of the force? Explain. (c) Calculate the scalar productv֏F. What is the angle between velocity and force?

Question: A conducting sphere is placed between two charged parallel plates such as those shown in Figure. Does the electric field inside the sphere depend on precisely where between the plates the sphere is placed? What about the electric potential inside the sphere? Do the answers to these questions depend on whether or not there is a net charge on the sphere? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free