Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circular loop of wire is in a region of the spatially uniform magnetic field, as shown in Fig. 29.15 . The magnetic field is directed into the plane of the figure. Determine the direction (clockwise or counterclockwise) of the induced current in the loop when (a) B is increasing; (b) B is decreasing; (c) B is constant with value B0. Explain your reasoning.

Short Answer

Expert verified
  1. Anti-clockwise
  2. Clockwise
  3. No induced current

Step by step solution

01

Explanation when B is increasingTop of Form

According to Lenz’s law, the direction of the induced current is such that it opposes the cause which causes it.

When B is increasing, the direction of the induced current will be such that the magnetic field produced by it will oppose the increasing magnetic field.

Hence, the direction of the magnetic field due to the induced current should be out of the plane of the paper. The induced current will flow in the anti-clockwise direction.

02

Explanation when B is decreasing

When B is decreasing, the direction of the induced current will be such that the magnetic field produced by it will oppose the increasing magnetic field.

Hence, the direction of the magnetic field due to the induced current should be into the plane of the paper. The induced current will flow in the clockwise direction.

03

Explanation when B is constant

The flux associated with the circular loop remains constant. Thus, there is no induced current flowing through the loop.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Can potential difference between the terminals of a battery ever be opposite in direction to the emf? If it can, give an example. If it cannot, explain why not.

Current passes through a solution of sodium chloride. In

1.00s,2.68×1016Na+ions arrive at the negative electrode and3.92×1016CI-

ions arrive at the positive electrode. (a) What is the current passing between

the electrodes? (b) What is the direction of the current?

The battery for a certain cell phone is rated at3.70V.According to the manufacturer it can produce3.15×104Jof electrical energy, enough for 2.25hof operation, before needing to be recharged. Find the average current that this cell phone draws when turned on.

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

A 12.4-µF capacitor is connected through a 0.895-MΩ resistor to a constant potential difference of 60.0 V. (a) Compute the charge on the capacitor at the following times after the connections are made: 0, 5.0 s, 10.0 s, 20.0 s, and 100.0 s. (b) Compute the charging currents at the same instants. (c) Graph the results of parts (a) and (b) for t between 0 and 20 s

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free