Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circular loop of wire is in a region of the spatially uniform magnetic field, as shown in Fig. 29.15 . The magnetic field is directed into the plane of the figure. Determine the direction (clockwise or counterclockwise) of the induced current in the loop when (a) B is increasing; (b) B is decreasing; (c) B is constant with value B0. Explain your reasoning.

Short Answer

Expert verified
  1. Anti-clockwise
  2. Clockwise
  3. No induced current

Step by step solution

01

Explanation when B is increasingTop of Form

According to Lenz’s law, the direction of the induced current is such that it opposes the cause which causes it.

When B is increasing, the direction of the induced current will be such that the magnetic field produced by it will oppose the increasing magnetic field.

Hence, the direction of the magnetic field due to the induced current should be out of the plane of the paper. The induced current will flow in the anti-clockwise direction.

02

Explanation when B is decreasing

When B is decreasing, the direction of the induced current will be such that the magnetic field produced by it will oppose the increasing magnetic field.

Hence, the direction of the magnetic field due to the induced current should be into the plane of the paper. The induced current will flow in the clockwise direction.

03

Explanation when B is constant

The flux associated with the circular loop remains constant. Thus, there is no induced current flowing through the loop.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

Copper has 8.5×1022free electrons per cubic meter. A 71.0-cm

length of 12-gauge copper wire that is 2.05 mm in diameter carries 4.85 A of

current. (a) How much time does it take for an electron to travel the length

of the wire? (b) Repeat part (a) for 6-gauge copper wire (diameter 4.12 mm)

of the same length that carries the same current. (c) Generally speaking,

how does changing the diameter of a wire that carries a given amount of

current affect the drift velocity of the electrons in the wire?


An electron at pointAinFig. E27.15has a speedv0of1.41×106m/sFind (a) the magnitude and direction of the magnetic field that will cause the electron to follow the semicircular path fromAtoB, and (b) the time required for the electron to move fromAtoB.

You want to produce three 1.00-mm-diameter cylindrical wires,

each with a resistance of 1.00 Ω at room temperature. One wire is gold, one

is copper, and one is aluminum. Refer to Table 25.1 for the resistivity

values. (a) What will be the length of each wire? (b) Gold has a density of1.93×10-4kgm3.

What will be the mass of the gold wire? If you consider the current price of gold, is

this wire very expensive?

The magnetic force on a moving charged particle is always perpendicular to the magnetic fieldB. Is the trajectory of a moving charged particle always perpendicular to the magnetic field lines? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free