Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the circuit shown in Fig. E26.41, both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time?

Short Answer

Expert verified

Answer:

(a) After4.21×10-3s closing the switch the potential across each capacitor is reduced to .

(b) The at that time will be0.125A

Step by step solution

01

Concept

A capacitor is a device that stores electrical energy in an electric field. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance.

02

Adding capacitance and resistance

From the above circuit we can see thatC1=15.0μF,C2=20.μF, and R1=30.0Ω,R2=50.0Ωthe switch is closed at the time .

Now, since both the capacitors are initially charged to we are required to find the equivalent capacitance and resistance to reduce the circuit to a simple circuit. Now we know that the capacitance adds in parallel and the resistance adds in series, hence we can write the thing in:

Req=R1+R2Ceq=C1+C2

Now let us substitute the values to get:

Req=(30.0+50.0)Ω=80.0ΩCeq=(15.0+20.0)μF=35.0μF

03

Calculating the time taken

While discharging the capacitor, the charge on the capacitor is given by:

Q=Q0e-tτ

Where τ=ReqCeqis the time constant, Q=CVCbut and Q=CVC0, we can write:

VC=VC0e-tτ

Now, we need to find how long after the closing of the switch S will the potential defense across each of the capacitors reduced to , therefore we need to solve for :

t=-τlnVCVC0

Now, putting the values we get:

t=-(2.80×10-3s)ln10.0V45.0V=4.21×10-3s

Therefore, the time taken is:

04

Calculating current

The current at a time is defined by

I=VC0Req=VC0Reqe-tτ

Plugging in the values we get:

I=VC0Reqe-tτ=45.080.0e-4.21×10-3s2.80×10-3s=0.125A

Therefore, the current is 0.125 A

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Fig. E26.47 each capacitor initially has a charge of magnitude 3.50 nC on its plates. After the switch S is closed, what will be the current in the circuit at the instant that the capacitors have lost 80.0% of their initial stored energy?

In a cyclotron, the orbital radius of protons with energy 300keVis 16.0cm. You are redesigning the cyclotron to be used instead for alpha particles with energy 300keV. An alpha particle has chargeq=+2e and mass m=6.64×10-27kg. If the magnetic filed isn't changed, what will be the orbital radius of the alpha particles?

In the circuit of Fig. E25.30, the 5.0 Ω resistor is removed and replaced by a resistor of unknown resistance R. When this is done, an ideal voltmeter connected across the points band creads 1.9 V. Find (a) the current in the circuit and (b) the resistance R. (c) Graph the potential rises and drops in this circuit (see Fig. 25.20).

A particle with charge-5.60nCis moving in a uniform magnetic fieldrole="math" localid="1655717557369" B=-(1.25T)k^

The magnetic force on the particle is measured to berole="math" localid="1655717706597" F=-(3.40×10-7N)i^-(7.40×10-7N)j^ (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there
components of the velocity that are not determined by the measurement of the force? Explain. (c) Calculate the scalar productv֏F. What is the angle between velocity and force?

In the circuit shown in Fig. E26.41, both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free