Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A wire 6.50 m long with diameter of 2.05 mm has a resistance of 0.0290 Ω. What material is the wire most likely made of?

Short Answer

Expert verified

Silver is most likely the material used to make the wire.

Step by step solution

01

Step 1:

Given data:

L=6.50md=2.05mm=2.05×10-3mR=0.0290Ω

The cross-sectional area of the wire is:

A=π4d2=π4×2.05×10-3m2=3.3×10-6m2

02

Step 2:

The material used to make wire is:

ρ=RAL=0.0290Ω3.3×10-6m26.50m=1.47×10-8Ω.m

Hence, silver is most likely the material used to make the wire.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each of the lettered points at the corners of the cube in Fig. Q27.12 represents a positive charge qmoving with a velocity of magnitude vin the direction indicated. The region in the figure is in a uniform magnetic field , parallel to the x-axis and directed toward the right. Which charges experience a force due to B? What is the direction of the force on each charge?

In the circuit shown in Fig. E26.41, both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time?

In the circuit shown in Fig. E25.30, the 16.0-V battery is removed and reinserted with the opposite polarity, so that its negative terminal is now next to point a. Find (a) the current in the circuit (magnitude anddirection); (b) the terminal voltage Vbaof the 16.0-V battery; (c) the potential difference Vacof point awith respect to point c. (d) Graph the potential rises and drops in this circuit (see Fig. 25.20).

Copper has 8.5×1022free electrons per cubic meter. A 71.0-cm

length of 12-gauge copper wire that is 2.05 mm in diameter carries 4.85 A of

current. (a) How much time does it take for an electron to travel the length

of the wire? (b) Repeat part (a) for 6-gauge copper wire (diameter 4.12 mm)

of the same length that carries the same current. (c) Generally speaking,

how does changing the diameter of a wire that carries a given amount of

current affect the drift velocity of the electrons in the wire?

In Europe the standard voltage in homes is 220 V instead of the 120 used in the United States. Therefore a “100-W” European bulb would be intended for use with a 220-V potential difference (see Problem 25.36). (a) If you bring a “100-W” European bulb home to the United States, what should be its U.S. power rating? (b) How much current will the 100-W European bulb draw in normal use in the United States?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free