Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 14-gauge copper wire of diameter 1.628 mm carries a current of 12.5 mA. (a) What is the potential difference across a 2.00-m length of the wire? (b) What would the potential difference in part (a) be if the wire were silver instead of copper, but all else were the same?

Short Answer

Expert verified

(a) Potential difference isV=2.063×10-4V

(b) Potential difference in using a silver wire isV=1.75×10-4V

Step by step solution

01

Step 1:

Given data:

The cross-sectional area of the wire:

02

Step 2:

(a) As the length L=200m, and the copper resistivity p=1.72×10-8Ω.m

So, the resistance of a copper wire is:

R=ρLA=1.72×10-8Ω.m2.00m2.082×10-6m2=0.0165Ω

Putting the value of R in equation V=IR

Therefore, the potential difference is;

V=IR=12.5×10-3A×0.014Ω=1.75×10-4V

Hence, the potential difference isV=2.063×10-4V.

03

Step 3:

(b) As the silver resistivityρ=1.47×10-8Ω.m

So, the resistance of a silver wire is:

R=ρLA=1.47×10-8Ω.m2.00m2.082×10-6m2=0.014Ω

Putting the value of R in equation V=IR,

Therefore, the potential difference is,

V=IR=12.5×10-3A×0.014Ω=1.75×10-4V

Hence, the potential difference in using a silver wire isV=1.75×10-4V

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) What is the potential difference Vadin the circuit of Fig. P25.62? (b) What is the terminal voltage of the 4.00-Vbattery? (c) A battery with emf and internal resistance 0.50Ωis inserted in the circuit at d, with its negative terminal connected to the negative terminal of the 8.00-Vbattery. What is the difference of potential Vbcbetween the terminals of the 4.00-Vbattery now?

In the circuit of Fig. E25.30, the 5.0 Ω resistor is removed and replaced by a resistor of unknown resistance R. When this is done, an ideal voltmeter connected across the points band creads 1.9 V. Find (a) the current in the circuit and (b) the resistance R. (c) Graph the potential rises and drops in this circuit (see Fig. 25.20).

We have seen that a coulomb is an enormous amount of charge; it is virtually impossible to place a charge of 1 C on an object. Yet, a current of 10A,10C/sis quite reasonable. Explain this apparent discrepancy.

Each of the lettered points at the corners of the cube in Fig. Q27.12 represents a positive charge qmoving with a velocity of magnitude vin the direction indicated. The region in the figure is in a uniform magnetic field , parallel to the x-axis and directed toward the right. Which charges experience a force due to B? What is the direction of the force on each charge?

A typical small flashlight contains two batteries, each having an emf of1.5V, connected in series with a bulb having resistance17Ω. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for1.5hwhat is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free