Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Because electric field lines and equipotential surfaces are always perpendicular, two equipotential surfaces can never cross; if they did, the direction of E would be ambiguous at the crossing points. Yet two equipotential surfaces appear to cross at the centre of Fig. 23.23c. Explain why there is no ambiguity about the direction of Ein this particular case.

Short Answer

Expert verified

The total energy is equal to zero, then there is no ambiguity about the direction of the total electric energy in this particular case

Step by step solution

01

About electric field lines 

Electric field lines are an excellent way of visualising electric fields. They were first introduced by Michael Faraday himself. A field line is drawn tangential to the net at a point. Thus at any point, the tangent to the electric field line matches the direction of the electric field at that point.

02

Determine why there is no ambiguity about the direction of E in this particular case

As We know the electric energy due to a point charge is given by

Calculation:

In order to evaluate the total electric energy, we use the following relation

Therefore the total energy is equal to zero, then there is no ambiguity about the direction of the total electric energy in this particular case

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

A cylindrical rod has resistance R. If we triple its length and diameter, what is its resistance in terms of R

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

The energy that can be extracted from a storage battery is always less than the energy that goes into it while it is being charged. Why?

Consider the circuit of Fig. E25.30. (a)What is the total rate at which electrical energy is dissipated in the 5.0-Ω and 9.0-Ω resistors? (b) What is the power output of the 16.0-V battery? (c) At what rate is electrical energy being converted to other forms in the 8.0-V battery? (d) Show that the power output of the 16.0-V battery equals the overall rate of consumption of electrical energy in the rest of the circuit.

Fig. E25.30.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free