Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A student claims that if lightning strikes a metal flagpole, the force exerted by the earth’s magnetic field on the current in the pole can be large enough to bend it. Typical lightning currents are of the order of104to105 A. Is the student’s opinion justified? Explain your reasoning

Short Answer

Expert verified

No, the student’s opinion that the lighting current are of the order104 and105 is not justified

Step by step solution

01

Magnetic field

Magnetic force is the force of attraction or repulsion arising between an electrically charged particles as a result of their motion.

Now, Magnetic field due to current carrying wire is given by:

F=ILBsinθ

02

Calculating the force

We know that the magnetic field is given by:

F=ILB.

Assuming the pole length is 10m, we get:

F=1051010-5=10N

As the result is very strong, it will depend on the material of the flag post. Hence the student might be right on the material of the pole.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 140-g ball containing excess electrons is dropped into a 110-m vertical shaft. At the bottom of the shaft, the ball suddenly enters a uniform horizontal magnetic field that has magnitude 0.300 T and direction from east to west. If air resistance is negligibly small, find the magnitude ond direction of the force that this magnetic field exerts on the ball just as it enters the field.

A battery-powered global positioning system (GPS) receiver operating 9.0 V on draws a current of 0.13 A. How much electrical energy does it consume during 30 minutes?

In the circuit shown in Fig. E25.30, the 16.0-V battery is removed and reinserted with the opposite polarity, so that its negative terminal is now next to point a. Find (a) the current in the circuit (magnitude anddirection); (b) the terminal voltage Vbaof the 16.0-V battery; (c) the potential difference Vacof point awith respect to point c. (d) Graph the potential rises and drops in this circuit (see Fig. 25.20).

(a) What is the potential difference Vadin the circuit of Fig. P25.62? (b) What is the terminal voltage of the 4.00-Vbattery? (c) A battery with emf and internal resistance 0.50Ωis inserted in the circuit at d, with its negative terminal connected to the negative terminal of the 8.00-Vbattery. What is the difference of potential Vbcbetween the terminals of the 4.00-Vbattery now?

The magnetic force on a moving charged particle is always perpendicular to the magnetic fieldB. Is the trajectory of a moving charged particle always perpendicular to the magnetic field lines? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free