Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The inductor shown in Figure has inductance 0.260 H and carries a current in the direction shown. The current is changing at a constant rate. (a) The potential between points a and b is Vab = 1.04 V, with point a at higher potential. Is the current increasing or decreasing? (b) If the current at t = 0 is 12.0 A, what is the current at t = 2.00 s?

Short Answer

Expert verified

a) the current is decreasing whereas the emf is directed to oppose this decrease.

b) the current at t = 2 sec is 4.00 amperes.

Step by step solution

01

Given Data

Faraday’s law states that a current is induced in a conductor when it is exposed to a time varying magnetic flux. This induced current is driven by a force called electromotive or electromagnetic force. The magnitude of induced emf is given by

ε=-Ldidt

Where L is the inductance of the conductor.

An inductor is a passive two-terminal device that stores energy in a magnetic field when current passes through it.

Lenz further explained the direction of this induced current. According to lens, the direction of induced current will be such that the magnetic field created by the induced current opposes the changing magnetic field which caused its induction.

02

Variation of current

We are given,

The inductor with an inductance, L = 0.260H

The potential between a and b, Vab= 1.04V

The induced emf is from point b to a which is same as the direction of current.

Therefore, the current is decreasing whereas the emf is directed to oppose this decrease.

03

The current at t = 2.00 s

The induced emf is given by,

EVαb=Vαb=Ldidtdidt=VabLdidt=1.04V0.26H=4.00A/s

If the current at localid="1664177006398" ti= 0 is ii= 12.0A,

The current attf= 2.00s, the rate is,

didt=if-iitf-ti=if-iitf

if=tfdidi+ii

if=2.00s-4.00A+12.0A=4.00Aif=4.00A

Therefore, the current at t = 2 sec is 4.00 amperes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Fig. E25.30, the 16.0-V battery is removed and reinserted with the opposite polarity, so that its negative terminal is now next to point a. Find (a) the current in the circuit (magnitude anddirection); (b) the terminal voltage Vbaof the 16.0-V battery; (c) the potential difference Vacof point awith respect to point c. (d) Graph the potential rises and drops in this circuit (see Fig. 25.20).

The battery for a certain cell phone is rated at3.70V.According to the manufacturer it can produce3.15×104Jof electrical energy, enough for 2.25hof operation, before needing to be recharged. Find the average current that this cell phone draws when turned on.

A typical small flashlight contains two batteries, each having an emf of1.5V, connected in series with a bulb having resistance17Ω. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for1.5hwhat is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)

Which of the graphs in Fig. Q25.12 best illustrates the current I in a real resistor as a function of the potential difference V across it? Explain.


An electron at pointAinFig. E27.15has a speedv0of1.41×106m/sFind (a) the magnitude and direction of the magnetic field that will cause the electron to follow the semicircular path fromAtoB, and (b) the time required for the electron to move fromAtoB.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free