Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The inductor shown in Figure has inductance 0.260 H and carries a current in the direction shown. The current is changing at a constant rate. (a) The potential between points a and b is Vab = 1.04 V, with point a at higher potential. Is the current increasing or decreasing? (b) If the current at t = 0 is 12.0 A, what is the current at t = 2.00 s?

Short Answer

Expert verified

a) the current is decreasing whereas the emf is directed to oppose this decrease.

b) the current at t = 2 sec is 4.00 amperes.

Step by step solution

01

Given Data

Faraday’s law states that a current is induced in a conductor when it is exposed to a time varying magnetic flux. This induced current is driven by a force called electromotive or electromagnetic force. The magnitude of induced emf is given by

ε=-Ldidt

Where L is the inductance of the conductor.

An inductor is a passive two-terminal device that stores energy in a magnetic field when current passes through it.

Lenz further explained the direction of this induced current. According to lens, the direction of induced current will be such that the magnetic field created by the induced current opposes the changing magnetic field which caused its induction.

02

Variation of current

We are given,

The inductor with an inductance, L = 0.260H

The potential between a and b, Vab= 1.04V

The induced emf is from point b to a which is same as the direction of current.

Therefore, the current is decreasing whereas the emf is directed to oppose this decrease.

03

The current at t = 2.00 s

The induced emf is given by,

EVαb=Vαb=Ldidtdidt=VabLdidt=1.04V0.26H=4.00A/s

If the current at localid="1664177006398" ti= 0 is ii= 12.0A,

The current attf= 2.00s, the rate is,

didt=if-iitf-ti=if-iitf

if=tfdidi+ii

if=2.00s-4.00A+12.0A=4.00Aif=4.00A

Therefore, the current at t = 2 sec is 4.00 amperes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

BIO Transmission of Nerve Impulses. Nerve cells transmit electric

signals through their long tubular axons. These signals propagate due to a

sudden rush of Na+ions, each with charge +e, into the axon. Measurements

have revealed that typically about 5.6×1011Na+ions enter each meter of the

axon during a time of . What is the current during this inflow of charge

in a meter of axon?

A 10.0cm long solenoid of diameter 0.400 cm is wound uniformly with 800 turns. A second coil with 50 turns is wound around the solenoid at its center. What is the mutual inductance of the combination of the two coils?

Suppose a resistor R lies alongeach edge of a cube (12 resistors in all)with connections at the corners. Find theequivalent resistance between two diagonally opposite corners of the cube (pointsa and b in Fig. P26.84).

(See Discussion Question Q25.14.) An ideal ammeter A is placed in a circuit with a battery and a light bulb as shown in Fig. Q25.15a, and the ammeter reading is noted. The circuit is then reconnected as in Fig. Q25.15b, so that the positions of the ammeter and light bulb are reversed. (a) How does the ammeter reading in the situation shown in Fig. Q25.15a compare to the reading in the situation shown in Fig. Q25.15b? Explain your reasoning. (b) In which situation does the light bulb glow more brightly? Explain your reasoning.

The battery for a certain cell phone is rated at3.70V.According to the manufacturer it can produce3.15×104Jof electrical energy, enough for 2.25hof operation, before needing to be recharged. Find the average current that this cell phone draws when turned on.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free