Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A light bulb and a parallel-plate capacitor with air between the plates are connected in series to an ac source. What happens to the brightness of the bulb when a dielectric is inserted between the plates of the capacitor? Explain

Short Answer

Expert verified

The brightness of the bulb increases

Step by step solution

01

Given Data

A capacitor is a device consisting of two conductors in close proximity that are used to store electrical energy. These conductors are insulated from each other. When a capacitor is attached to an AC supply, the resistance produced by it is called capacitive reactance (XC).

Resistance is measure of opposition to the flow of current in a closed electrical circuit. It is measured in Ohm (Ω).

Impedance is defined as the effective resistance of an electric circuit to the flow of current due to the combined effect of resistance (offered by resistor) and reactance (offered by capacitor and inductor).

02

Brightness of bulb

Power dissipated in the bulb is given by

P=IrmsR2

By inserting a dielectric material capacitance of the capacitor will increase, and thus more energy will be stored in the capacitor.

If Z is the impedance of the circuit, then current in the circuit is given by

Irms=V/Z

As the capacitance increase, the impedance decreases and since the rms current is inversely proportional to impedance, the current consumed by bulb increases which means the consumed power will increase and thus bulb will be more bright.

Therefore, the brightness of the bulb increases.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit of Fig. E25.30, the 5.0 Ω resistor is removed and replaced by a resistor of unknown resistance R. When this is done, an ideal voltmeter connected across the points band creads 1.9 V. Find (a) the current in the circuit and (b) the resistance R. (c) Graph the potential rises and drops in this circuit (see Fig. 25.20).

In the circuit shown in Fig. E26.18,ε=36.V,R1=4.0Ω,R2=6.0Ω,R3=3.0Ω(a) What is the potential difference Vab between points a and b when the switch S is open and when S is closed? (b) For each resistor, calculate the current through the resistor with S open and with S closed. For each resistor, does the current increase or decrease when S is closed?

(a) At room temperature, what is the strength of the electric field in a

12-gauge copper wire (diameter 2.05mm) that is needed to cause a 4.50-A

current to flow? (b) What field would be needed if the wire were made of silver

instead?

A resistor with resistance Ris connected to a battery that has emf 12.0 V and internal resistance r=0.40Ω. For what two values of R will the power dissipated in the resistor be 80.0 W ?

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free