Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you had two small boxes, each containing 1.0 g of protons. (a) If one were placed on the moon by an astronaut and the other were left on the earth, and if they were connected by a very light (and very long!) string, what would be the tension in the string? Express your answer in newtons and in pounds. Do you need to take into account the gravitational forces of the earth and moon on the protons? Why? (b) What gravitational force would each box of protons exert on the other box?

Short Answer

Expert verified
  1. The tension in the string is 560 N .
  2. The gravitational force exerted by one box on the other box is 4.5×1034N .

Step by step solution

01

Step 1: Concept of Coulomb’s Law

According to the Coulomb’s law, the force between two charges spaced at a distance is directly proportional to the product of the magnitude of the charges and inversely proportional to the square of the distance between them.

Coulomb’s law of force between two charges is,

F=kq1q2r2 ..... (1)

Here, the Coulomb’s constant, k=8.99×109N.m2/C2,ris the distance between two charges q1and q2.

(a) Determination of the tension in the string.

The data required in this problem are,

Mass of box, m=1.00×10-3kg

Mass of proton, mp=1.67×10-27kg

Charge of a proton, e=1.60×10-19C.

The distance between the earth and the moon, r=3.84×108m.

To determine the total charge, the number of atoms in the box is required. Therefore

N=mmp=1.0×10-3kg1.67×10-27kg=5.99×1023

Define the total charge as below.

q=Ne=5.99×10231.60×10-19C=9.58×104C

Determine the electrical force from equation (1) by substituting all known values.

F=8.99×109N.m2/C29.58×104C3.84×108m2=560N=130lb

Hence, the force is repulsive in nature and this force is equal to the tension in the string.

02

(b) Determination of the gravitational force exerted by one box on the other box.

The gravitational force expression is given as,

Fg=Gm1m2r2

Here, Fg is the gravitational force, G is the gravitational constant, ris the distance between two masses m1and m2.

Here, m1=m2

Substitute all the values in the above equation,

F=6.67×10-11Nm2/kg21.0×10-3kg23.84×108m2=4.5×10-34N

Hence, the gravitational force is much less than the electrical force which makes it negligible in comparison.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Fig. E26.18,ε=36.V,R1=4.0Ω,R2=6.0Ω,R3=3.0Ω(a) What is the potential difference Vab between points a and b when the switch S is open and when S is closed? (b) For each resistor, calculate the current through the resistor with S open and with S closed. For each resistor, does the current increase or decrease when S is closed?

A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction pependicurlar to its original direction (Fig. E27.24). The beam travels a distance of 1.10 cm while in the field. What is the magnitude of the magnetic field?

An electrical conductor designed to carry large currents has a circular cross section 2.50 mm in diameter and is 14.0 m long. The resistance between its ends is 0.104Ω. (a) What is the resistivity of the material? (b) If the electric-field magnitude in the conductor is 1.28 V/m, what is the total current? (c) If the material has 8.5×1028free electrons per cubic meter, find the average drift speed under the conditions of part (b).

Question: A high voltage dc power line falls on a car, so the entire metal body of the car is at a potential of with respect to the ground. What happens to the occupants (a) when they are sitting in the car and (b) when they step out of the car? Explain your reasoning.

(a) What is the potential difference Vadin the circuit of Fig. P25.62? (b) What is the terminal voltage of the 4.00-Vbattery? (c) A battery with emf and internal resistance 0.50Ωis inserted in the circuit at d, with its negative terminal connected to the negative terminal of the 8.00-Vbattery. What is the difference of potential Vbcbetween the terminals of the 4.00-Vbattery now?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free