Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A Radio Inductor. You want the current amplitude through a 0.450-mH inductor (part of the circuitry for a radio receiver) to be 1.80 mA when a sinusoidal voltage with amplitude 12.0 V is applied across the inductor. What frequency is required?

Short Answer

Expert verified

The required frequency of the ac source is 2.36 MHz.

Step by step solution

01

Given Data

An inductor is a passive two-terminal device that stores energy in a magnetic field when current passes through it.

The amplitude of voltage, V = 12.0 V

The amplitude of current, I = 1.80 mA

The inductance of the coil, L = 0.450 mH

02

Determination of frequency

Equation for voltage across the inductor –

VL=1ωLVL=I2πfLf=VL2πILf=12.0V2π1.80*10-3A*0.450*10-3Hf=2.36*106Hz

Therefore, the required frequency of the ac source is 2.36 Mega-Hertz.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction pependicurlar to its original direction (Fig. E27.24). The beam travels a distance of 1.10 cm while in the field. What is the magnitude of the magnetic field?

An electrical conductor designed to carry large currents has a circular cross section 2.50 mm in diameter and is 14.0 m long. The resistance between its ends is 0.104Ω. (a) What is the resistivity of the material? (b) If the electric-field magnitude in the conductor is 1.28 V/m, what is the total current? (c) If the material has 8.5×1028free electrons per cubic meter, find the average drift speed under the conditions of part (b).

Why does an electric light bulb nearly always burn out just as you turn on the light, almost never while the light is shining?

When is a 1.5 - VAAA battery not actually a 1.5 - V battery? That is, when do this its terminals provide a potential difference of less than 1.5 V ?

BIO The average bulk resistivity of the human body (apart from surface resistance of the skin) is about 5.0Ω·m. The conducting path between the hands can be represented approximately as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible bysoaking the hands in salt water. (a) What is the resistance between the hands if the skin resistance is negligible? (b) What potential difference between thehands is needed for a lethal shock current of 100 mA ? (Note that your result shows that small potential differences produce dangerous currents when the skin is damp.) (c) With the current in part (b),what power is dissipated in the body?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free