Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A point charge q1=4.00nCis located on the x-axis at x=2.00m, and a second point chargeq2=-6.00nC is on the y-axis at Y=1.00m. What is the total electric flux due to these two-point charges through a spherical surface centered at the origin and with radius (a)0.500m (b) 1.50m, (c) 2.50m?

Short Answer

Expert verified

(a) The total electric flux due to these two-point charges through a spherical surface centered at the origin and with radius 0.500m is0N.m2/C.

(b) The total electric flux due to these two-point charges through a spherical surface centered at the origin and with radius 1.50 m is-678.0Nm2/C.

(c)The total electric flux due to these two-point charges through a spherical surface centered at the origin and with radius 2.50 m is-226.0Nm2/C.

Step by step solution

01

Definition of electric flux

The term electric flux may be defined as the application of electric field that may be thought of as the number of electric lines of force that intersect a given area.

02

The total electric flux due to these two-point charges through a spherical surface centered at the origin and with different radius.

The total electric flux can be calculated by the relation

FE=Qendε0

Where role="math" localid="1664202829532" Qenclε0total charged enclosed and electric constant respectively.

For radius 0.500 m.There is no any charge in the radius 0.500m so electric flux is zero.

For radius 1.50m.containq2=-6.00nC so the electric flux can be calculated as

FE=-6.00×10-9C8.85×10-12C12/N.m2FE=-678.10-12N.m2/C

Hence, the total electric flux due to these two-point charges through a spherical surface centered at the origin and with radius 0.500m is0N.m2/C.

For radius 2.50m contain q1=4.00nC,q2=-6.00nCso total charged enclosed is

Qend=4.00-6.00nCQencl=-2.00nC

Hence, the total electric flux due to these two-point charges through a spherical surface centered at the origin and with radius 1.50m is-6.78.0Nm2/C.

Now the electric flux can be calculated as

FE=-2.00×10-9C8.85×10-12C2/N.m2FE=-226.0N.m2/C2

Hence, the total electric flux due to these two-point charges through a spherical surface centered at the origin and with radius 2.50m is-226.0Nm2/C.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two coils are wound around the same cylindrical form. When the current in the first coil is decreasing at a rate of , the induced emf in the second coil has magnitude 1.65×10-3V. (a) What is the mutual inductance of the pair of coils? (b) If the second coil has 25 turns, what is the flux through each turn when the current in the first coil equals 1.20A? (c) If the current in the second coil increases at a rate of 0.360A/s, what is the magnitude of the induced emf in the first coil?

(a) At room temperature, what is the strength of the electric field in a

12-gauge copper wire (diameter 2.05mm) that is needed to cause a 4.50-A

current to flow? (b) What field would be needed if the wire were made of silver

instead?

A particle of mass 0.195 g carries a charge of-2.50×10-8C. The particle is given an initial horizontal velocity that is due north and has magnitude4.00×104m/s. What are the magnitude and direction of the minimum magnetic field that will keepthe particle moving in the earth’s gravitational field in the samehorizontal, northward direction?

A heart defibrillator is used to enable the heart to start beating if it has stopped. This is done by passing a large current of12Athrough the body at25Vfor a very short time, usually3.0msabout . (a) What power does the defibrillator deliver to the body, and (b) how much energy is transferred ?

A 140-g ball containing excess electrons is dropped into a 110-m vertical shaft. At the bottom of the shaft, the ball suddenly enters a uniform horizontal magnetic field that has magnitude 0.300 T and direction from east to west. If air resistance is negligibly small, find the magnitude ond direction of the force that this magnetic field exerts on the ball just as it enters the field.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free