Chapter 9: Problem 5
A child is pushing a merry-go-round. The angle through which the merry-go- round has turned varies with time according to \(\theta{(t) = \gamma t + \beta t^3}\), where \(\gamma =\) 0.400 rad/s and \(\beta =\) 0.0120 rad/s\(^3\). (a) Calculate the angular velocity of the merry-go-round as a function of time. (b) What is the initial value of the angular velocity? (c) Calculate the instantaneous value of the angular velocity \(\omega$$_z\) at \(t =\) 5.00 s and the average angular velocity \(\omega_{av-z}\) for the time interval \(t =\) 0 to \(t =\) 5.00 s. Show that \(\omega_{av-z}\) is not equal to the average of the instantaneous angular velocities at \(t =\) 0 and \(t =\) 5.00 s, and explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.