Problem 58
A truck with mass \(m\) has a brake failure while going down an icy mountain road of constant downward slope angle \(\alpha\) (\(\textbf{Fig. P7.58}\)). Initially the truck is moving downhill at speed \(v_0\). After careening downhill a distance \(L\) with negligible friction, the truck driver steers the runaway vehicle onto a runaway truck ramp of constant upward slope angle \(\beta\). The truck ramp has a soft sand surface for which the coefficient of rolling friction is \(\mu_r\). What is the distance that the truck moves up the ramp before coming to a halt? Solve by energy methods.
Problem 59
A certain spring found not to obey Hooke's law exerts a restoring force \(Fx(x) = -ax - \beta x^2\) if it is stretched or compressed, where \(\alpha\) = 60.0 N/m and \(\beta\) = 18.0 N/m2. The mass of the spring is negligible. (a) Calculate the potential-energy function U(\(x\)) for this spring. Let \(U = 0\) when \(x = 0\). (b) An object with mass 0.900 kg on a frictionless, horizontal surface is attached to this spring, pulled a distance 1.00 m to the right (the \(+x\)-direction) to stretch the spring, and released. What is the speed of the object when it is 0.50 m to the right of the \(x = 0\) equilibrium position?
Problem 61
A conservative force \(\overrightarrow{F}\) is in the \(+x\)-direction and has magnitude \(F(x) = a/(x + x_0)^2\), where \(\alpha = 0.800\) N \(\cdot\) m\(^2\) and \(x_0 = 0.200\) m. (a) What is the potential-energy function \(U(x)\) for this force? Let \(U(x) \rightarrow 0\) as \(x \rightarrow \infty\). (b) An object with mass \(m = 0.500\) kg is released from rest at \(x = 0\) and moves in the \(+x\)-direction. If \(\overrightarrow{F}\) is the only force acting on the object, what is the object's speed when it reaches \(x = 0.400\) m?
Problem 62
A 3.00-kg block is connected to two ideal horizontal springs having force constants \(k_1 = 25.0\) N/cm and \(k_2 = 20.0\) N/cm (\(\textbf{Fig. P7.62}\)). The system is initially in equilibrium on a horizontal, frictionless surface. The block is now pushed 15.0 cm to the right and released from rest. (a) What is the maximum speed of the block? Where in the motion does the maximum speed occur? (b) What is the maximum compression of spring 1?
Problem 63
A 0.150-kg block of ice is placed against a horizontal, compressed spring mounted on a horizontal tabletop that is 1.20 m above the floor. The spring has force constant 1900 N/m and is initially compressed 0.045 m. The mass of the spring is negligible. The spring is released, and the block slides along the table, goes off the edge, and travels to the floor. If there is negligible friction between the block of ice and the tabletop, what is the speed of the block of ice when it reaches the floor?
Problem 64
If a fish is attached to a vertical spring and slowly lowered to its equilibrium position, it is found to stretch the spring by an amount \(d\). If the same fish is attached to the end of the unstretched spring and then allowed to fall from rest, through what maximum distance does it stretch the spring? (\(Hint\): Calculate the force constant of the spring in terms of the distance \(d\) and the mass \(m\) of the fish.)
Problem 65
You are an industrial engineer with a shipping company. As part of the package-handling system, a small box with mass 1.60 kg is placed against a light spring that is compressed 0.280 m. The spring has force constant \(k = 45.0\) N/m. The spring and box are released from rest, and the box travels along a horizontal surface for which the coefficient of kinetic friction with the box is \(\mu_k = 0.300\). When the box has traveled 0.280 m and the spring has reached its equilibrium length, the box loses contact with the spring. (a) What is the speed of the box at the instant when it leaves the spring? (b) What is the maximum speed of the box during its motion?
Problem 66
A basket of negligible weight hangs from a vertical spring scale of force constant 1500 N/m. (a) If you suddenly put a 3.0-kg adobe brick in the basket, find the maximum distance that the spring will stretch. (b) If, instead, you release the brick from 1.0 m above the basket, by how much will the spring stretch at its maximum elongation?
Problem 67
A 3.00-kg fish is attached to the lower end of a vertical spring that has negligible mass and force constant 900 N/m. The spring initially is neither stretched nor compressed. The fish is released from rest. (a) What is its speed after it has descended 0.0500 m from its initial position? (b) What is the maximum speed of the fish as it descends?
Problem 68
You are designing an amusement park ride. A cart with two riders moves horizontally with speed \(v = 6.00\) m/s. You assume that the total mass of cart plus riders is 300 kg. The cart hits a light spring that is attached to a wall, momentarily comes to rest as the spring is compressed, and then regains speed as it moves back in the opposite direction. For the ride to be thrilling but safe, the maximum acceleration of the cart during this motion should be 3.00\(g\). Ignore friction. What is (a) the required force constant of the spring, (b) the maximum distance the spring will be compressed?