Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 69

A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point \(P\), it encounters a rough section. The coefficient of friction there is not constant; it starts at 0.100 at \(P\) and increases linearly with distance past \(P\), reaching a value of 0.600 at 12.5 m past point \(P\). (a) Use the work\(-\)energy theorem to find how far this box slides before stopping. (b) What is the coefficient of friction at the stopping point? (c) How far would the box have slid if the friction coefficient didn't increase but instead had the constant value of 0.100?

Problem 70

Consider a spring that does not obey Hooke's law very faithfully. One end of the spring is fixed. To keep the spring stretched or compressed an amount \(x\), a force along the \(x\)-axis with \(x\)-component \(F_x = kx - bx^2 + cx^3\) must be applied to the free end. Here \(k = 100 \, \mathrm {N/m}\), \(b = 700 \, \mathrm {N/m{^2}}\), and \(c = 12,000 \, \mathrm{N/m}^3\). Note that \(x > 0\) when the spring is stretched and \(x< 0\) when it is compressed. How much work must be done (a) to stretch this spring by 0.050 m from its unstretched length? (b) To \(compress\) this spring by 0.050 m from its unstretched length? (c) Is it easier to stretch or compress this spring? Explain why in terms of the dependence of \(F_x\) on \(x\). (Many real springs behave qualitatively in the same way.)

Problem 71

A small block with a mass of 0.0600 kg is attached to a cord passing through a hole in a frictionless, horizontal surface (\(\textbf{Fig. P6.71}\)). The block is originally revolving at a distance of 0.40 m from the hole with a speed of 0.70 m/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.10 m. At this new distance, the speed of the block is 2.80 m/s. (a) What is the tension in the cord in the original situation, when the block has speed \(\upsilon = 0.70\) m/s? (b) What is the tension in the cord in the final situation, when the block has speed \(\upsilon = 2.80\) m/s? (c) How much work was done by the person who pulled on the cord?

Problem 72

A proton with mass 1.67 \(\times\) 10\(^{-27}\) kg is propelled at an initial speed of 3.00 \(\times\) 10\(^5\) m/s directly toward a uranium nucleus 5.00 m away. The proton is repelled by the uranium nucleus with a force of magnitude \(F = \alpha/x^2\), where \(x\) is the separation between the two objects and \(\alpha = 2.12 \times 10^{-26} \, \mathrm{N} \cdot \mathrm{m}^2\). Assume that the uranium nucleus remains at rest. (a) What is the speed of the proton when it is \(8.00 \times 10^{-10}\) m from the uranium nucleus? (b) As the proton approaches the uranium nucleus, the repulsive force slows down the proton until it comes momentarily to rest, after which the proton moves away from the uranium nucleus. How close to the uranium nucleus does the proton get? (c) What is the speed of the proton when it is again 5.00 m away from the uranium nucleus?

Problem 73

You are asked to design spring bumpers for the walls of a parking garage. A freely rolling 1200-kg car moving at 0.65 m/s is to compress the spring no more than 0.090 m before stopping. What should be the force constant of the spring? Assume that the spring has negligible mass.

Problem 75

A 2.50-kg textbook is forced against a horizontal spring of negligible mass and force constant 250 N/m, compressing the spring a distance of 0.250 m. When released, the textbook slides on a horizontal tabletop with coefficient of kinetic friction \(\mu_k\) \(=\) 0.30. Use the work\(-\)energy theorem to find how far the textbook moves from its initial position before it comes to rest.

Problem 76

The spring of a spring gun has force constant \(k = 400\) N/m and negligible mass. The spring is compressed 6.00 cm, and a ball with mass 0.0300 kg is placed in the horizontal barrel against the compressed spring. The spring is then released, and the ball is propelled out the barrel of the gun. The barrel is 6.00 cm long, so the ball leaves the barrel at the same point that it loses contact with the spring. The gun is held so that the barrel is horizontal. (a) Calculate the speed with which the ball leaves the barrel if you can ignore friction. (b) Calculate the speed of the ball as it leaves the barrel if a constant resisting force of 6.00 N acts on the ball as it moves along the barrel. (c) For the situation in part (b), at what position along the barrel does the ball have the greatest speed, and what is that speed? (In this case, the maximum speed does not occur at the end of the barrel.)

Problem 77

One end of a horizontal spring with force constant 130.0 N/m is attached to a vertical wall. A 4.00-kg block sitting on the floor is placed against the spring. The coefficient of kinetic friction between the block and the floor is \(\mu_k = 0.400\). You apply a constant force \(\overrightarrow{F}\) to the block. \(\overrightarrow{F}\) has magnitude \(F = 82.0\) N and is directed toward the wall. At the instant that the spring is compressed 80.0 cm, what are (a) the speed of the block, and (b) the magnitude and direction of the block's acceleration?

Problem 78

One end of a horizontal spring with force constant 76.0 N/m is attached to a vertical post. A 2.00-kg block of frictionless ice is attached to the other end and rests on the floor. The spring is initially neither stretched nor compressed. A constant horizontal force of 54.0 N is then applied to the block, in the direction away from the post. (a) What is the speed of the block when the spring is stretched 0.400 m? (b) At that instant, what are the magnitude and direction of the acceleration of the block?

Problem 79

A 5.00-kg block is moving at \(\upsilon_0\) \(=\) 6.00 m/s along a frictionless, horizontal surface toward a spring with force constant \(k\) = 500 N/m that is attached to a wall (\(\textbf{Fig. P6.79}\)). The spring has negligible mass. (a) Find the maximum distance the spring will be compressed. (b) If the spring is to compress by no more than 0.150 m, what should be the maximum value of \(\upsilon_0\)?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks