Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 33

A surgeon is using material from a donated heart to repair a patient's damaged aorta and needs to know the elastic characteristics of this aortal material. Tests performed on a 16.0-cm strip of the donated aorta reveal that it stretches 3.75 cm when a 1.50-N pull is exerted on it. (a) What is the force constant of this strip of aortal material? (b) If the maximum distance it will be able to stretch when it replaces the aorta in the damaged heart is 1.14 cm, what is the greatest force it will be able to exert there?

Problem 34

To stretch a spring 3.00 cm from its unstretched length, 12.0 J of work must be done. (a) What is the force constant of this spring? (b) What magnitude force is needed to stretch the spring 3.00 cm from its unstretched length? (c) How much work must be done to compress this spring 4.00 cm from its unstretched length, and what force is needed to compress it this distance?

Problem 35

Three identical 8.50-kg masses are hung by three identical springs (\(\textbf{Fig. E6.35}\)). Each spring has a force constant of 7.80 kN/m and was 12.0 cm long before any masses were attached to it. (a) Draw a free-body diagram of each mass. (b) How long is each spring when hanging as shown? (\(Hint\): First isolate only the bottom mass. Then treat the bottom two masses as a system. Finally, treat all three masses as a system.)

Problem 38

A spring of force constant 300.0 N/m and unstretched length 0.240 m is stretched by two forces, pulling in opposite directions at opposite ends of the spring, that increase to 15.0 N. How long will the spring now be, and how much work was required to stretch it that distance?

Problem 39

A 6.0-kg box moving at 3.0 m/s on a horizontal, frictionless surface runs into a light spring of force constant 75 N/cm. Use the work\(-\)energy theorem to find the maximum compression of the spring.

Problem 40

As part of your daily workout, you lie on your back and push with your feet against a platform attached to two stiff springs arranged side by side so that they are parallel to each other. When you push the platform, you compress the springs. You do 80.0 J of work when you compress the springs 0.200 m from their uncompressed length. (a) What magnitude of force must you apply to hold the platform in this position? (b) How much \(additional\) work must you do to move the platform 0.200 m \(farther\), and what maximum force must you apply?

Problem 42

A 4.00-kg block of ice is placed against a horizontal spring that has force constant \(k\) = 200 N/m and is compressed 0.025 m. The spring is released and accelerates the block along a horizontal surface. Ignore friction and the mass of the spring. (a) Calculate the work done on the block by the spring during the motion of the block from its initial position to where the spring has returned to its uncompressed length. (b) What is the speed of the block after it leaves the spring?

Problem 45

At a waterpark, sleds with riders are sent along a slippery, horizontal surface by the release of a large compressed spring. The spring, with force constant \(k\) = 40.0 N/cm and negligible mass, rests on the frictionless horizontal surface. One end is in contact with a stationary wall. A sled and rider with total mass 70.0 kg are pushed against the other end, compressing the spring 0.375 m. The sled is then released with zero initial velocity. What is the sled's speed when the spring (a) returns to its uncompressed length and (b) is still compressed 0.200 m?

Problem 46

(a) Suppose you cut a massless ideal spring in half. If the full spring had a force constant k, what is the force constant of each half, in terms of \(k\)? (\(Hint\): Think of the original spring as two equal halves, each producing the same force as the entire spring. Do you see why the forces must be equal?) (b) If you cut the spring into three equal segments instead, what is the force constant of each one, in terms of \(k\)?

Problem 47

A small glider is placed against a compressed spring at the bottom of an air track that slopes upward at an angle of 40.0\(^\circ\) above the horizontal. The glider has mass 0.0900 kg. The spring has \(k\) = 640 N/m and negligible mass. When the spring is released, the glider travels a maximum distance of 1.80 m along the air track before sliding back down. Before reaching this maximum distance, the glider loses contact with the spring. (a) What distance was the spring originally compressed? (b) When the glider has traveled along the air track 0.80 m from its initial position against the compressed spring, is it still in contact with the spring? What is the kinetic energy of the glider at this point?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks