Problem 1
You push your physics book 1.50 m along a horizontal tabletop with a horizontal push of 2.40 N while the opposing force of friction is 0.600 N. How much work does each of the following forces do on the book: (a) your 2.40-N push, (b) the friction force, (c) the normal force from the tabletop, and (d) gravity? (e) What is the net work done on the book?
Problem 2
Using a cable with a tension of 1350 N, a tow truck pulls a car 5.00 km along a horizontal roadway. (a) How much work does the cable do on the car if it pulls horizontally? If it pulls at 35.0\(^\circ\) above the horizontal? (b) How much work does the cable do on the tow truck in both cases of part (a)? (c) How much work does gravity do on the car in part (a)?
Problem 3
A factory worker pushes a 30.0-kg crate a distance of 4.5 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction between the crate and the floor is 0.25. (a) What magnitude of force must the worker apply? (b) How much work is done on the crate by this force? (c) How much work is done on the crate by friction? (d) How much work is done on the crate by the normal force? By gravity? (e) What is the total work done on the crate?
Problem 6
Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 1.80 \(\times\) 10\(^6\) N, one 14\(^\circ\) west of north and the other 14\(^\circ\) east of north, as they pull the tanker 0.75 km toward the north. What is the total work they do on the supertanker?
Problem 7
Two blocks are connected by a very light string passing over a massless and frictionless pulley (\(\textbf{Fig. E6.7}\)). Traveling at constant speed, the 20.0-N block moves 75.0 cm to the right and the 12.0-N block moves 75.0 cm downward. How much work is done (a) on the 12.0-N block by (i) gravity and (ii) the tension in the string? (b) How much work is done on the 20.0-N block by (i) gravity, (ii) the tension in the string, (iii) friction, and (iv) the normal force? (c) Find the total work done on each block.
Problem 8
A loaded grocery cart is rolling across a parking lot in a strong wind. You apply a constant force \(\overrightarrow{F} =(30 \, \mathrm{N})\hat{\imath} - (40 \, \mathrm{N})\hat{\jmath}\) to the cart as it undergoes a displacement \(\overrightarrow{s} = (-9.0 \, \mathrm{m})\hat{\imath} (3.0 \, \mathrm{m})\hat{\jmath}\). How much work does the force you apply do on the grocery cart?
Problem 9
A 0.800-kg ball is tied to the end of a string 1.60 m long and swung in a vertical circle. (a) During one complete circle, starting anywhere, calculate the total work done on the ball by (i) the tension in the string and (ii) gravity. (b) Repeat part (a) for motion along the semicircle from the lowest to the highest point on the path.
Problem 10
A 12.0-kg package in a mail-sorting room slides 2.00 m down a chute that is inclined at 53.0\(^\circ\) below the horizontal. The coefficient of kinetic friction between the package and the chute's surface is 0.40. Calculate the work done on the package by (a) friction, (b) gravity, and (c) the normal force. (d) What is the net work done on the package?
Problem 11
A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0\(^\circ\) above the horizontal by a rope exerting a 72.0-N pull parallel to the ramp's surface. If the carton travels 5.20 m along the surface of the ramp, calculate the work done on it by (a) the rope, (b) gravity, and (c) the normal force of the ramp. (d) What is the net work done on the carton? (e) Suppose that the rope is angled at 50.0\(^\circ\) above the horizontal, instead of being parallel to the ramp's surface. How much work does the rope do on the carton in this case?
Problem 12
A boxed 10.0-kg computer monitor is dragged by friction 5.50 m upward along a conveyor belt inclined at an angle of 36.9\(^\circ\) above the horizontal. If the monitor's speed is a constant 2.10 cm/s, how much work is done on the monitor by (a) friction, (b) gravity, and (c) the normal force of the conveyor belt?