Chapter 37: Problem 38
Two protons (each with rest mass \(M\) = 1.67 \(\times\) 10\(^{-27}\) kg) are initially moving with equal speeds in opposite directions. The protons continue to exist after a collision that also produces an \(\eta_0\) particle (see Chapter 44). The rest mass of the \(\eta_0\) is m = 9.75 \(\times\) 10\(^{-28}\) kg. (a) If the two protons and the \(\eta_0\) are all at rest after the collision, find the initial speed of the protons, expressed as a fraction of the speed of light. (b) What is the kinetic energy of each proton? Express your answer in MeV. (c) What is the rest energy of the \(\eta_0\), expressed in MeV? (d) Discuss the relationship between the answers to parts (b) and (c). 37.39 .
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.